CISC 7332X T6 C15a: Congestion Control and Quality of Service

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

The Network Layer

 Responsible for delivering packets between endpoints over multiple links

Congestion

- Overloading of network (when too much traffic is offered)
 - Packet switching: store-and-forward
 - Need memory to store packets
 - Need processing power to forward packets
 - e.g., too many packets arriving at a router, exceed its capacity, result in lost of packets (no memory to store the packets) or packet delay

Performance Degradation

- Performance degrades due to loss or retransmissions
 - Goodput (=useful packets) trails offered load

Handling Congestion: Layered Approach

- Effectively handling congestion requires that the Network and upper (e.g., Transport) layers work together
- Congestion control approaches in Network Layer
 - Traffic-aware routing
 - Admission control
 - Traffic throttling
 - Load shedding

Congestion Control Approaches

- Network must do its best with the offered load
 - Different approaches at different timescales
 - Nodes should also reduce offered load (Transport)

Traffic-Aware Routing

 Choose routes depending on traffic, not just topology

Traffic-Aware Routing: Example

 e.g., use EI for West-to-East traffic if CF is loaded

Traffic-Aware Routing: Challenges

• Favorable routes changing quickly, results in wild oscillation in routing tables.

Admission Control

- Admission control allows a new traffic load only if the network has sufficient capacity, e.g., with virtual circuits
 - Can combine with looking for an uncongested route

Admission Control: Example

Traffic Throttling

- Congested routers signal hosts to slow down traffic
 - ECN (Explicit Congestion Notification) marks packets and receiver returns signal to sender

Traffic Throttling

- Example: using the Exponentially Weighted Moving Average on queuing delay inside routers
 - $d_{new} = \alpha d_{old} + (1 \alpha) s$
 - where d is delay and s is queue length

Load Shedding

- When all else fails, network will drop packets (shed load)
- Can be done end-to-end or link-by-link
- But which packet to drop?

Link-by-Link Load Shedding

• Link-by-link produces rapid relief

End-to-end Load Shedding

 End-to-end takes longer to have an effect, but can better target the cause of congestion

Questions?

- Concept of congestion and congestion control
- Network layer approaches
 - Traffic-aware routing
 - Admission control
 - Traffic throttling
 - Load shedding

Quality of Service

- Application requirements
- Traffic shaping
- Packet scheduling
- Admission control
- Integrated services
- Differentiated services

Application Requirements

 Different applications care about different properties

Application	Bandwidth	Delay	Jitter	Loss
Email	Low	Low	Low	Medium
File sharing	High	Low	Low	Medium
Web access	Medium	Medium	Low	Medium
Remote login	Low	Medium	Medium	Medium
Audio on demand	Low	Low	High	Low
Video on demand	High	Low	High	Low
Telephony	Low	High	High	Low
Videoconferencing	High	High	High	Low

"High" means a demanding requirement, e.g., low delay

QoS on Network Layer

 Network provides service with different kinds of QoS (Quality of Service) to meet application requirements

Network Service	Application	
Constant bit rate	Telephony	
Real-time variable bit rate	Videoconferencing	
Non-real-time variable bit rate	Streaming a movie	
Available bit rate	File transfer	

Example of QoS categories from ATM networks

Traffic Shaping

- Traffic shaping regulates the average rate and burstiness of data entering the network
 - Lets users make guarantees: "my transmission pattern will look like this, can you handle it?"

Token/Leaky Bucket

- Token/Leaky bucket limits both the average rate (R) and short-term burst (B) of traffic
 - For token, bucket size is B, water enters at rate R and is removed to send; opposite for leaky.

Effect of Token Bucket

Smaller bucket size delays traffic and reduces burstiness

Packet Scheduling

- Without packet scheduling, packets are handled in the FIFO (first in first out) manner
- Packet scheduling divides router/link resources among traffic flows other than FIFO
 - Different queueing discipline

Round-Robin Fair Queueing

Input queues

Weighted-Fair Queueing

 Fair Queueing approximates bit-level fairness with different packet sizes; weights change target levels

Weighted-Fair Queueing: Example

Packets may be sent out of arrival order

Packet	Arrival	Length	Finish	Output
	time		time	order
Α	0	8	8	1
B	5	6	11	3
С	5	10	10	2
D	8	9	20	7
E	8	8	14	4
F	10	6	16	5
G	11	10	19	6
Н	20	8	28	8

 $F_{i} = max(A_{i}, F_{i-1}) + L_{i}/W$

Finish virtual times determine transmission order

Admission Control

- Admission control takes a traffic flow specification and decides whether the network can carry it
 - Sets up packet scheduling to meet QoS

Parameter	Unit	
Token bucket rate	Bytes/sec	
Token bucket size	Bytes	
Peak data rate	Bytes/sec	
Minimum packet size	Bytes	
Maximum packet size	Bytes	

Admission Control: Example

Admission Control: Example

- Construction to guarantee bandwidth B and delay D:
 - Shape traffic source to a (R, B) token bucket
 - Run WFQ with weight W / all weights > R/capacity
 - Holds for all traffic patterns, all topologies

Integrated Services

- Design with QoS for each flow
- Handle multicast traffic.
- Admission with RSVP (Resource reSerVation Protocol):
 - Receiver sends a request back to the sender
 - Each router along the way reserves resources
 - Routers merge multiple requests for same flow
 - Entire path is set up, or reservation not made
- Require advanced setup to establish each flow

Integrated Services: Example

Differentiated Services

- Design with classes of QoS
- Customers buy what they want
 - Expedited class is sent in preference to regular class
 - Less expedited traffic but better quality for applications
- No requirement on setting up path. Each router implements it indepedently

Differentiated Services: Example

Differentiated Services: Implementation

- Customers mark desired class on packet
- ISP shapes traffic to ensure markings are paid for
- Routers use WFQ to give different service levels

Differentiated Services: Implementation

Questions?

- Application requirements
- Quality of Services (QoS) provisioning
 - Traffic shaping
 - Packet scheduling
 - Admission control
 - Integrated services
 - Differentiated services