CISC 7332X T6 CO7a: Error Handling

Hui Chen

Department of Computer & Information Science
CUNY Brooklyn College

Data Link Layer

• Responsible for delivering frames of information over a single link

- Handles transmission errors
- Regulates the flow of data

Application	
Transport	
Network	
Link	
Physical	

Design Issues in Data Link Layer

- Frames
- Possible services
- Framing methods
- Error control
- Flow control

Outline

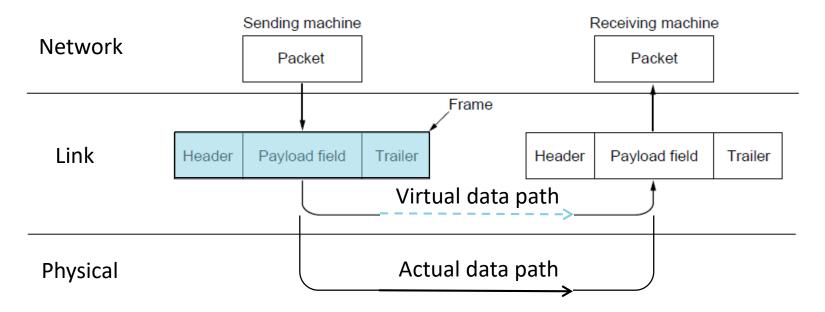
- Frames
- Concept of error detection and correction
- Error detection
- Error correction

Frames

- Sender
 - Link layer accepts <u>packets</u> from the network layer, and encapsulates them into <u>frames</u> that it sends using the physical layer
- Receiver: reception is the opposite process

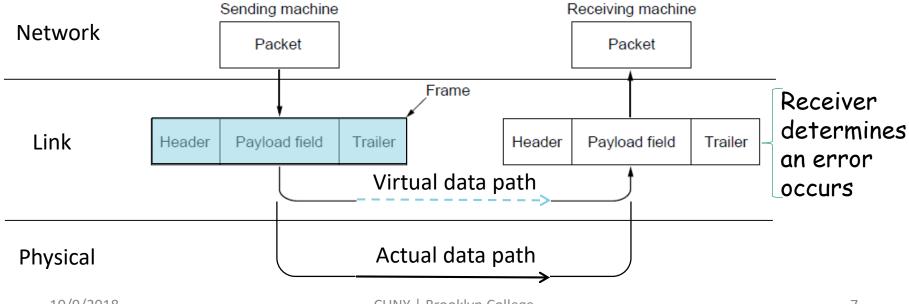
Frames: Interactions between Layers

 The packet from the network layer is the payload of the data link layer



Error Detection and Correction

- Error control repairs frames that are received in error
 - Requires errors to be detected at the receiver



Error Detection and Correction

- Error codes add structured redundancy to data so errors can be either detected, or corrected
- Error detection codes
 - Parity
 - Checksums
 - Cyclic redundancy codes
- Error correction codes:
 - Hamming codes
 - Binary convolutional codes
 - Reed-Solomon and Low-Density Parity Check codes
 - · Mathematically complex, widely used in real systems

Two-Dimensional Parity

- Use it to demonstrate the concept of error detection and correction
- Not used in practice (why?)

Parity Bit

- Append a parity bit to each character
- Even parity
 - Set the parity bit as either 0 or 1 such that the number of 1's in the character is <u>EVEN</u>
- Odd parity
 - Set the parity bit as either 0 or 1 such that the number of 1's in the character is <u>ODD</u>

Error Detection via Parity Bit

Assume even parity:

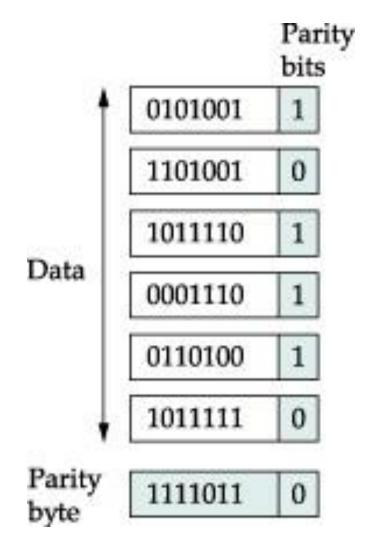
- 1. Add parity bit at the sender: parity bit is added as the modulo 2 sum of data bits
 - Equivalent to XOR; this is even parity
 - Ex: 1110000 → 11100001
- Detect error at the receiver when the sum is wrong

Examples

- 1 bit error, 11100101; detected, sum is wrong
- 3 bit errors, 11011001; detected sum is wrong
- Error can also be in the parity bit itself
- 1 bit error, 11100000; detected, sum is wrong
- 2 bit errors, 11<u>0</u>000<u>1</u>1; <u>not</u> detected, sum is correct.

Two-Dimensional Parity

- · Assume event parity is used
- Parity carried out on both directions
- Each byte has a parity bit
 - Even number of 1's: 1 → parity bit
- Each frame has a parity byte
 - Event number of 1's: 1 → corresponding bit in parity byte



Exercise CO7a-1

Q1: Sending the following message over a link

H ELO

determine its two-dimensional parity bits and byte.

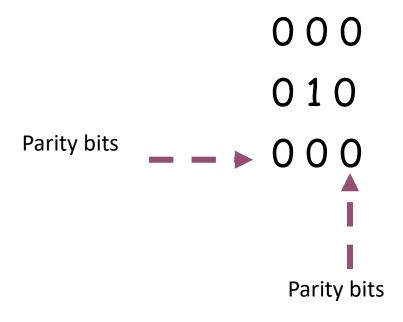
Assume using the ASCII code (not the Extended ASCII).

- Q2: In above case, show an example of received "frame" (i.e., data // parity bits and byte) that has detectable error. Include both data bits and parity bits and byte.
- Q3: Show an example of received "frame" (i.e., data // parity bits and byte) that has non-detectable error.

How Good is Two-Dimensional Parity for Error Detection?

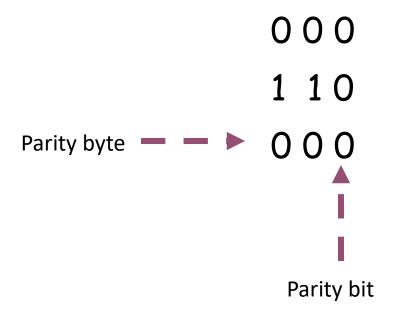
- What types of errors does it catch?
 - Any 1-bit error? 2-bit error? 3-bit error? 4-bit error? ...
- How much extra data are needed to detect errors?
- How efficient is the algorithms to compute the two-dimensional parity and detect errors?

Two-Dimensional Parity Code as Error Correction Code: 1 Bit Error



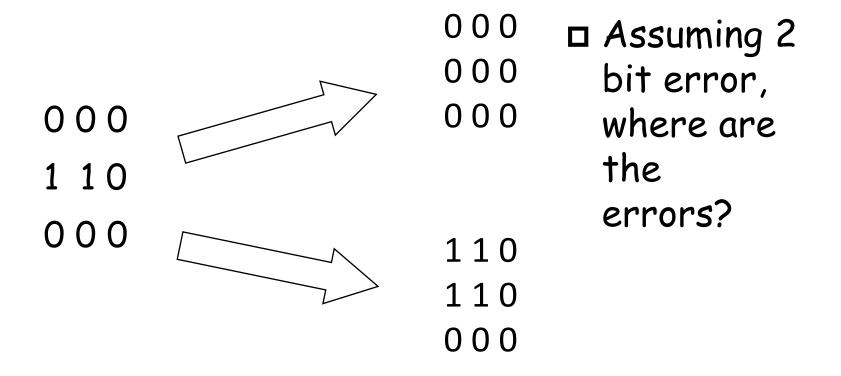
- Assuming even parity, is there any bit error?
- □ Assuming 1 bit error, where is the error?

Two-Dimensional Parity Code as Error Correction Code: 2 Bit Errors



- Assuming even parity, is there any bit error?
- Assuming 2 bit error, where are the errors?

Two-Dimensional Parity Code as Error Correction Code: 2 Bit Errors?



Two-Dimensional Parity Code as Error Correction Code: Quality?

- How many bit errors can two-dimensional parity code correct?
 - 1-bit error?
 - 2-bit error?
 - •
- Is there a systematic method to gauge this?
- How much extra data are needed to correct errors?
- How efficient is the algorithms to compute the two-dimensional parity and detect and correct errors?

Questions?

- · Concept of error detection and correction
- Parity and two-dimensional parity
- Quality of error detection and correction codes

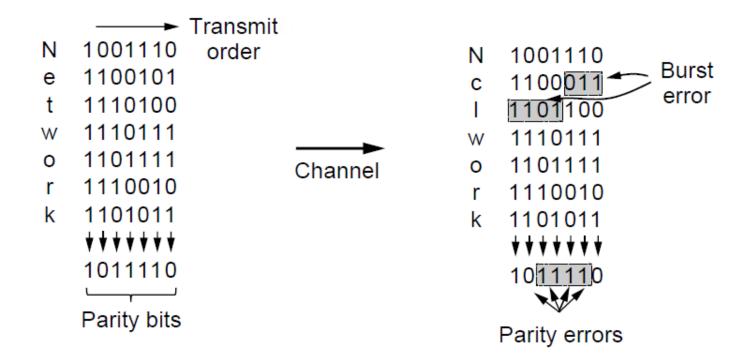
Error Detection

- Parity, revisited
- CRC

Parity as Error Detection Code

- Errors often appear in bursts of bits.
- Interleaving of N parity bits detects burst errors up to N
 - Each parity sum is made over non-adjacent bits
 - An even burst of up to N errors will not cause it to fail

Burst of Bit Errors



Concept of Error Detection, Revisited

- Error detection code
 - Sender has a message M, a n-bit message to send to receiver
 - For error detection, add k bits of redundant data to an n-bit message
 - Generate a bit string P: M // E
 - Send P to the receiver
- Quality of the error detection code
 - Low redundancy: k << n
 - High probability of detecting errors
 - · Can be implemented efficiently

Cyclic Redundant Check

- Represent n-bit string as n-1 degree polynomial
 - Bit position as power of each term
 - Digital signal: coefficients are either 0 or 1
 - Bit string: 11011 as $M(x) = 1 x^4 + 1 x^3 + 0 x^2 + 1 x^1 + 1 x^0 = x^4 + x^3 + x + 1$
- Sender and receiver agrees on a divisor polynomial C(x)
 - Digital signal: coefficients are either 0 or 1
 - Degree of C(x): k
 - Example: $C(x) = x^3 + x^2 + 1$ and k = 3

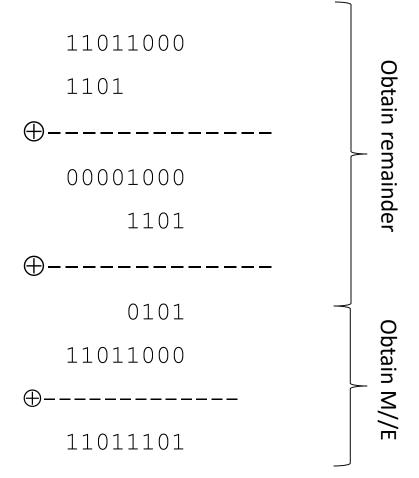
CRC: Example using Polynomials

- Algorithm generating M//E
 - Left shift M by k bits
 - Example
 - 11011 becomes 11011000
 - New polynomial: $T(x) = M(x)x^k$
 - Get remainder of T(x)/C(x)
 - Example: $(x^4 + x^3 + x + 1)x^3 / (x^3 + x^2 + 1) \rightarrow$
 - Result must be 0 or 1: modular 2 arithmetic → "-" = XOR
 - Quotient: $X^4 + 1$
 - Remainder: $R(x) = x^2 + 1$
 - Subtract R(x) from T(x)
 - Example
 - $(x^4 + x^3 + x + 1)x^3 (x^2+1) = x^7 + x^6 + x^4 + x^3 + x^2 + 1$
 - The result is M//E
- Send the result to receiver

CRC: Previous Example using Shift and XOR

Message: 11011000

Divisor: 1101



CRC: Error Detection Algorithm

- Algorithm verifying received message
 - Message represented as polynomial T(x)
 - Calculate remainder of T(x) / C(x)
 - If the remainder is not 0, an error
 - Otherwise, no errors detected

Quality of CRC

- Algorithm efficiency
 - Shift and XOR
- Redundancy
 - Depends on C(x)
- Error detection probability
 - Depends on C(x)

CRC in Practice

- Common CRC Polynomials
 - CRC-8: 1 0000 0111
 - CRC-10: 110 0011 0011
 - CRC-32: used in Ethernet

Exercise CO7a-2

 Q1: Sending the following data (1 byte in hexadecimal numbers) over a link

A1

determine the "frame" (data // CRC) to be transmit using CRC-8 (divisor = x^8+x^2+x+1)

- Q2: In above case, show an example of received frame (data // CRC) that contains a detectable error.
- Q3: Show an example of received frame that has non-detectable error.

Question?

- A frame can be corrupted
 - Error detection
 - Parity
 - CRC
- Error detection not 100% reliable! protocol may miss some errors, but rarely
 - larger EDC field yields better detection and correction

Error Correction

- Error bounds and Hamming distance
- Hamming code
- Convolutional codes

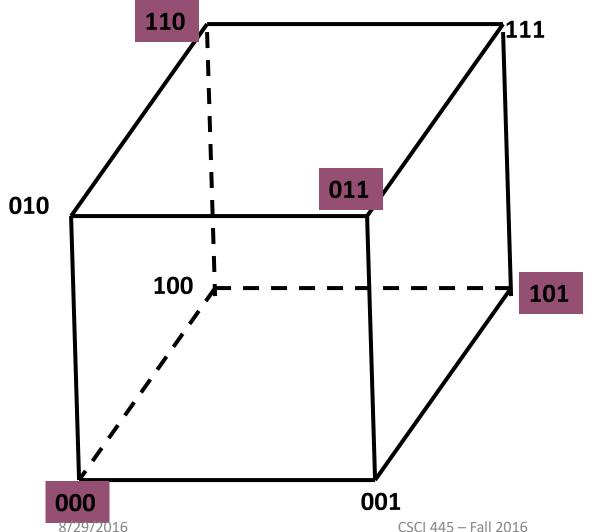
Error Bounds: Hamming distance

- Code turns data of n bits into codewords of n+k bits
 - $M \rightarrow M//K: n \rightarrow n + k$
 - # of total possible bit strings: 2^(n+k)
 - k << (n + k)
- Hamming distance
 - The minimum bit flips to turn one valid codeword into any other valid one.
 - # of bit positions in which two code words differ
 - Example: h(10001001, 10110001) = 3

Code Words and Hamming Distance: Example

- Message size 2: n = 2
- 1 bit parity bit: k = 1
- $2^{(n+k)} = 2^3 = 8$
- Select code words: 000, 011, 101, 110
 - # of code words = 4
 - Minimum distance of any pair = 2

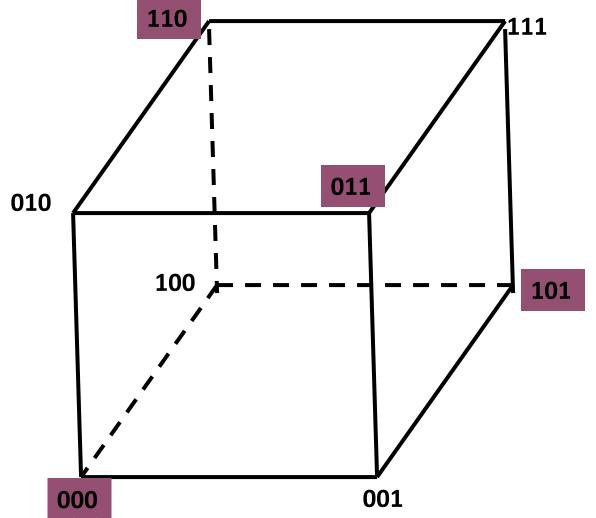
Example: Geometric Perspective



- Edge is 1 bit flip
- Detect 1 bit errors
- Cannot detect any 2-bit errors (why)

35

Example: Error Correction



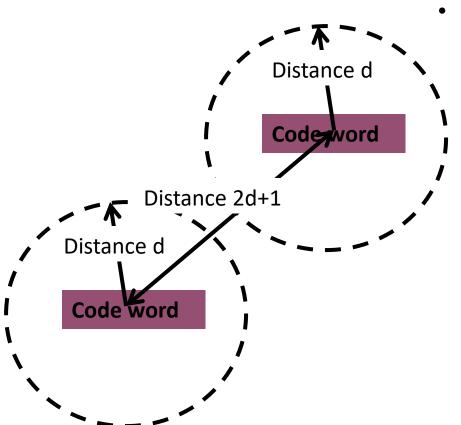
- Edge is 1 bit flip
- Detect 1 bit errors
- Cannot detect any 2-bit errors
- Distance of the code is 2
- Cannot correct any error (why?)

CSCI 445 - Fall 2016

Hamming distance: Detection & Correction

- Code turns data of n bits into codewords of n+k bits
- Hamming distance is the minimum bit flips to turn one valid codeword into any other valid one.
 - Example with 4 codewords of 10 bits (n=2, k=8):
 - 000000000, 0000011111, 1111100000, and 1111111111
 - Hamming distance is 5
- Bounds for a code with distance:
 - 2d+1 can correct d errors (e.g., 2 errors above)
 - d+1 can detect d errors (e.g., 4 errors above)

Detection and Correction: Geometric Perspective



 Correct d errors, need distance 2d + 1 code words

- After d errors, the closest code word remains the correct one.
- Code words $5 = 2 \times 2 + 1$
 - 00000 00000
 - 00000 11111
 - 11111 00000
 - 11111 11111
 - Correct at most 2 errors

Redundant Data

- Observation
 - 2d + 1 distance code → correct d errors
 - 2d + 1 distance code → detect 2d errors
- Error correction codes generally more redundant
- Error correction or error detection?
 - Error detection example: m + k with error rate r
 - N(m+k)+rN(m+k) with error correction
 - Error correction example: m + K with error rate r and K >>
 - N (m + K)
 - N(m+k)+rN(m+k)-N(m+K)=Nk+rN(m+k)-N(m+k)-N(m+k-k)
 - r + rm + rk K > 0? r + rm + rk K < 0?

Questions?

- Geometric perspective of error correction and detection
- Hamming distance