CISC 7332X T6 CO6a: Digital Modulation

Hui Chen

Department of Computer & Information Science CUNY Brooklyn College

Outline

- Digital modulation
 - Baseband transmission
 - Line codes
 - Design considerations
 - Passband transmission
 - Digital modulations
- Multiplexing
 - FDMA, TDMA, and CDMA
- Switching
 - Circuit switching and packet switching

Digital Modulation

- Wire and wireless channels carry analog signals
 - Example: continuously varying voltage, light intensity, sound intensity
- Digital modulation
 - The process that converts between bits and signals
 - How do we represent bits in analog signal?
 - How do we extract bits from analog signals?

Schemes of Digital Modulations

- Baseband transmission
- Passband transmission

Baseband and Passband Signals

- Review
 - Bandwidth (an <u>overloaded</u> term)
 - The width of frequency range transmitted without being strongly attenuated
 - A physical property of the transmission medium
- Signals that run from 0 up to a maximum frequency are called <u>baseband</u> signals
 - 0 ~ B Hz, where B is the bandwidth
- Signals that are shifted to occupy a higher range of frequencies are called <u>passband</u> signals
 - $S \sim S + B Hz$, where S the frequencies shifted

Baseband Transmission

- A few schemes (also called encoding in the context of baseband transmission, or line codes)
 - Non-Return-to-Zero (NRZ), NRZ Invert (NRZI), Manchester, 4B/5B, Bipolar encoding/Alternate Mark Inversion (AMI)
- Issues to consider
 - Bandwidth efficiency
 - Clock recovery
 - Balanced signals
 - Baseline wander

Line Codes

• An overview with an example

Non-Return-to-Zero (NRZ)

- Low \rightarrow 0, e.g., negative voltage
- High \rightarrow 1, e.g., positive voltage
- Difficult to recover clock
 - When long strings of 1s or Os
- Bandwidth efficiency
 - B/2 bandwidth for B bps data rate for the example below (why?)
 - More than 2 levels? e.g., 4 levels for 00, 01, 10, 11
 - Symbol, symbol rate (baud rate), bit rate

Bandwidth Efficiency

• Consider the example

Bits 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0

• We observe

• V = 2

• If we want max. bit rate to be B bps, what is the required bandwidth Br Hz?

• B = 2 Br log2 V, and Br = B/2, i.e., B/Br = 2?

• What if V = 4?

Bandwidth Efficiency and An Example on the Web

- <u>http://www.techplayon.com/spectral-</u> <u>efficiency-5g-nr-and-4g-lte/</u>
- And
- <u>http://www.5gamericas.org/files/1915/0282</u> /6623/LTE_to_5G_Cellular_and_Broadband <u>Innovation - Rysavy for upload.pdf</u> (slide 21)

Clock Recovery

- The receiver needs to know when one symbol ends and the next begins to tell bits apart
- Clock is imperfect, a long running of 0 and 1's makes it difficult
- Transmitting clock
 - A dedicated line for clock \rightarrow wasteful
 - Recovering clocks
 - Synchronize clocks when detecting transition of signal levels
 - XORing clock and NRZ signal (Manchester encoding)
 - Increasing transitions (NRZI)

Non-Return-to-Zero Invert (NRZI)

- Signal transition $\rightarrow 1$
- No transition $\rightarrow 0$
- Solve the clock recovery problem caused by consecutive 1's
- The problem caused by consecutive 0's remains
 - Prohibits sender from transmitting two many 0's in a row,
 e.g., no more than 15 consecutive 0's on T1 line
- Application: the popular USB (Universal Serial Bus) standard

Manchester

- NRZ signal \oplus Clock signal
 - $0 \rightarrow$ low-to-high transition; $1 \rightarrow$ high-to-low transition
- Application: classic Ethernet
- Solve the problems caused by both consecutive 1's and 0's
- New problem:
 - Clock's frequency is required twice as high, bandwidth efficiency?

4B/5B

- Addressing clock recovery and bandwidth efficiency
 - Map consecutive O's or 1's to slightly longer patterns that do not have too many consecutive O's and 1's
- 4B/5B uses a fixed 4-bits-to-5-bits translation table
 - 4B/5B's (5-4)/4 = 25% overhead, much less than Manchester's (2-1)/1 = 100% overhead
 - Transmit resulting codes using NRZI

4B/5B Translation

4-Bit Data Symbol	5-Bit Code	4-Bit Data Symbol	5-Bit Code
0000	11110	1000	10010
0001	01001	1001	10011
0010	10100	1010	10110
0011	10101	1011	10111
0100	01010	1100	11010
0101	01011	1101	11011
0110	01110	1110	11100
0111	01111	1111	11101

Balanced Signals

- Signals that have as much positive voltage even over short period of time
- Balanced signals are desired
 - Balanced signals have no Direct-Current (DC) component
 - Some physical media, such as, coaxial cable strongly attenuate a DC component
 - Some methods of connecting the receiver to the channel pass only the Alternate-Current (AC) portion of the signal, e.g., capacitive coupling
 - Helps clock recovery since balanced signals must be a mix of positive and negative voltages
 - Eases receiver calibration because the average of the signal can be measured and used as a decision threshold to decode symbols
- Example line codes
 - Bipolar encoding, e.g., Alternate Mark Inversion (AMI) in traditional telephone network
 - 8B/10B line code

Questions?

- Line codes and issues
- NRZ, NRZI, Manchester, 48/58
- Design consideration: bandwidth efficiency, clock recovery, balanced signals

In-Class Exercise CO6a-1

- Encode bit sequence 01101 using NRZ, NRZI, Manchester encoding
- Draw signals, clocks, and bit boundaries

In-Class Exercise C06a-2

- Encode bit sequence 01101100 using NRZ; however, with 2 bits / symbol.
- Draw the signal, clock, symbol boundaries.
- What is the ratio of Max. Data Rate / Required Bandwidth?

Passband Transmission

- Baseband transmission
 - Signal: 0 ~ B Hz. Not always available; low frequency → large size of antenna (antenna size and wave length are comparable, e.g., <u>https://en.wikipedia.org/wiki/Project_Sanguine</u>); need to control attenuation ...
- Passband transmission
 - Signal: S ~ S+B Hz
 - Digital modulation: regulating a carrier signal that sits in the passband with a baseband signal, i.e., modulating the amplitude, frequency, and/or phase of a carrier signal sends bits in a (non-zero) frequency range

Schemes of Passband Transmission

- Amplitude Shift Keying (ASK)
- Frequency Shift Keying (FSK)
- Phase Shift Keying (FSK)
 - Simplest form: Binary Phase Shift Keying (BFSK)

Modulation: Overview by Example

Modulate NRZ with ASK, FSK, and PSK

Modulating Amplitude/Phase

- Binary Phase Shift Keying (BPSK)
 - 2 symbols, each 1 bit (e.g., 0 or 180 degrees)
- Quadrature Phase Shift Keying (QPSK)
 - 4 symbols, each 2 bits (e.g., 45, 135, 225, 315 degrees)
- Quadrature Amplitude Modulation (QAM)
 - Examples: QAM-16, QAM-64

Constellation Diagram

 A shorthand to capture the amplitude and phase modulations of symbols

Constellation and Symbol-Bit Mapping

- Design consideration: small burst of noise at the receiver not lead to many bit errors
 - Not to assign consecutive bit values ot adjacent symbols
 - Gray-coding assigns bits to symbols so that small symbol errors cause few bit errors

Point	Decodes as	Bit errors
Α	1101	0
В	110 <u>0</u>	1
С	1 <u>0</u> 01	1
D	11 <u>1</u> 1	1
E	<u>0</u> 101	1

In-Class Exercise CO6a-3

- Consider BPSK, QPSK, QAM-16, and QAM-64. Assume the max. <u>data</u> rate can be obtained when QAM-64 is use at a given S/N denoted as SNR_{64} . What would be the required S/N (in relation to SNR_{64}) for BPSK, QPSK, and QAM-16 if the same max. <u>symbol</u> rate must be maintained?
- Motivating example in practice
 - See

<u>https://documentation.meraki.com/MR/WiFi_Basics_and</u> <u>Best_Practices/802.11_fundamentals%3A_Modulation</u>