
State Machine Replication and Consensus Algorithms -
Part II

Hui Chen a

aCUNY Brooklyn College

October 22, 2025

H. Chen (CUNY) CISC 7312X October 22, 2025 1 / 6



Raft Consensus Algorithm: Overview

▶ Quorum-based consensus algorithm
▶ Three components

▶ Leader election
▶ Log replication
▶ Safety

▶ Leader must be supported by a majority of the group (a quorum)
▶ Majority quorum: n servers tolerate f failures, where n = 2f + 1

▶ Availability-consistency trade-off:
▶ Consistency. At most one connected subgroup can serve requests
▶ Availability. Once a majority of replicas fail, the remaining replicas

should not serve requests.

H. Chen (CUNY) CISC 7312X October 22, 2025 2 / 6



Terms and Elections in Raft

Raft Consensus Algorithm (Ongaro and Ousterhout 2014)
▶ Time divided into terms
▶ Each term begins with an election
▶ Three server states: Leader, Follower, Candidate
▶ Election process

▶ Followers start election if no communication from leader within election
timeout

▶ Candidate requests votes from other servers
▶ If candidate receives votes from majority, becomes leader
▶ If split vote, starts new election

H. Chen (CUNY) CISC 7312X October 22, 2025 3 / 6



Log Replication in Raft

▶ Log structure
▶ Log replication process

H. Chen (CUNY) CISC 7312X October 22, 2025 4 / 6



Log Structure in Raft

tifying its position in the log.

The leader decides when it is safe to apply a log en-

try to the state machines; such an entry is called commit-

ted. Raft guarantees that committed entries are durable

and will eventually be executed by all of the available

state machines. A log entry is committed once the leader

that created the entry has replicated it on a majority of

the servers (e.g., entry 7 in Figure 6). This also commits

all preceding entries in the leader’s log, including entries

created by previous leaders. Section 5.4 discusses some

subtleties when applying this rule after leader changes,

and it also shows that this definition of commitment is

safe. The leader keeps track of the highest index it knows

to be committed, and it includes that index in future

AppendEntries RPCs (including heartbeats) so that the

other servers eventually find out. Once a follower learns

that a log entry is committed, it applies the entry to its

local state machine (in log order).

We designed the Raft log mechanism to maintain a high

level of coherency between the logs on different servers.

Not only does this simplify the system’s behavior and

make it more predictable, but it is an important component

of ensuring safety. Raft maintains the following proper-

ties, which together constitute the Log Matching Property

in Figure 3:

• If two entries in different logs have the same index

and term, then they store the same command.

• If two entries in different logs have the same index

and term, then the logs are identical in all preceding

entries.

The first property follows from the fact that a leader

creates at most one entry with a given log index in a given

term, and log entries never change their position in the

log. The second property is guaranteed by a simple con-

sistency check performed by AppendEntries. When send-

ing an AppendEntries RPC, the leader includes the index

and term of the entry in its log that immediately precedes

the new entries. If the follower does not find an entry in

its log with the same index and term, then it refuses the

new entries. The consistency check acts as an induction

step: the initial empty state of the logs satisfies the Log

Matching Property, and the consistency check preserves

the Log Matching Property whenever logs are extended.

As a result, whenever AppendEntries returns successfully,

the leader knows that the follower’s log is identical to its

own log up through the new entries.

During normal operation, the logs of the leader and

followers stay consistent, so the AppendEntries consis-

tency check never fails. However, leader crashes can leave

the logs inconsistent (the old leader may not have fully

replicated all of the entries in its log). These inconsisten-

cies can compound over a series of leader and follower

crashes. Figure 7 illustrates the ways in which followers’

logs may differ from that of a new leader. A follower may

Figure 7: When the leader at the top comes to power, it is

possible that any of scenarios (a–f) could occur in follower

logs. Each box represents one log entry; the number in the

box is its term. A follower may be missing entries (a–b), may

have extra uncommitted entries (c–d), or both (e–f). For ex-

ample, scenario (f) could occur if that server was the leader

for term 2, added several entries to its log, then crashed before

committing any of them; it restarted quickly, became leader

for term 3, and added a few more entries to its log; before any

of the entries in either term 2 or term 3 were committed, the

server crashed again and remained down for several terms.

be missing entries that are present on the leader, it may

have extra entries that are not present on the leader, or

both. Missing and extraneous entries in a log may span

multiple terms.

In Raft, the leader handles inconsistencies by forcing

the followers’ logs to duplicate its own. This means that

conflicting entries in follower logs will be overwritten

with entries from the leader’s log. Section 5.4 will show

that this is safe when coupled with one more restriction.

To bring a follower’s log into consistency with its own,

the leader must find the latest log entry where the two

logs agree, delete any entries in the follower’s log after

that point, and send the follower all of the leader’s entries

after that point. All of these actions happen in response

to the consistency check performed by AppendEntries

RPCs. The leader maintains a nextIndex for each follower,

which is the index of the next log entry the leader will

send to that follower. When a leader first comes to power,

it initializes all nextIndex values to the index just after the

last one in its log (11 in Figure 7). If a follower’s log is

inconsistent with the leader’s, the AppendEntries consis-

tency check will fail in the next AppendEntries RPC. Af-

ter a rejection, the leader decrements nextIndex and retries

the AppendEntries RPC. Eventually nextIndex will reach

a point where the leader and follower logs match. When

this happens, AppendEntries will succeed, which removes

any conflicting entries in the follower’s log and appends

entries from the leader’s log (if any). Once AppendEntries

succeeds, the follower’s log is consistent with the leader’s,

and it will remain that way for the rest of the term.

If desired, the protocol can be optimized to reduce the

number of rejected AppendEntries RPCs. For example,

when rejecting an AppendEntries request, the follower

7

H. Chen (CUNY) CISC 7312X October 22, 2025 5 / 6



Bibliography I

Ongaro, Diego and John Ousterhout (2014). “In search of an
understandable consensus algorithm”. In: 2014 USENIX annual
technical conference (USENIX ATC 14), pp. 305–319.

H. Chen (CUNY) CISC 7312X October 22, 2025 6 / 6


	References

