
MapReduce

Hui Chen a

aCUNY Brooklyn College

September 3, 2025

H. Chen (CUNY) CISC 7312X September 3, 2025 1 / 16



MapReduce Programming Pattern vs. MapReduce System

Is there a difference?

H. Chen (CUNY) CISC 7312X September 3, 2025 2 / 16



Motivational Problem

Carry out a large-scale data processing task efficiently.
▶ Build search index of web programmers
▶ Sort web pages
▶ Analyze structure of web

Need 1,000s computers, do hours of computations, process multi-terabyte
of data
▶ how to parallelize the computation,
▶ how to distribute the data, and
▶ how to handle failures

which requires large amount of complex code that obscure the original
simple computation

H. Chen (CUNY) CISC 7312X September 3, 2025 3 / 16



Engineering problem: how to make it easy for
non-specialist programmers?

H. Chen (CUNY) CISC 7312X September 3, 2025 4 / 16



MapReduce Job: Example

▶ split input into M pieces
▶ Map: calls Map() for each split, yield “intermediate” data, a list of

k,v pairs
▶ Each Map() call is a “task”

▶ Reduce: collect all intermediate values for each key and passes them
to a Reduce() call

▶ Final output is a set of k,v pairs from Reduce()s

H. Chen (CUNY) CISC 7312X September 3, 2025 5 / 16



Example: Counting Words

▶ Map(1, Input1) → a,1 b,2
▶ Map(2, Input2) → b,3
▶ Map(3, Input3) → a,2 c,1

Then,
▶ Reduce(a, [(a, 1), (a, 2)]) → a,3
▶ Reduce(b, [(b, 2), (b, 3)]) → b,5
▶ Reduce(c, [(c, 1)]) → c,1

H. Chen (CUNY) CISC 7312X September 3, 2025 6 / 16



Scalability

N worker computers can process data in parallel, may yield N times
throughput

H. Chen (CUNY) CISC 7312X September 3, 2025 7 / 16



Reducing Complexity

MapReduce system:
▶ distributes data and code to servers
▶ tracks which map/reduce task have finished
▶ shuffles intermediate data from Map tasks to Reduce tasks.
▶ Balances load over servers/computers
▶ Recovers from failed servers

H. Chen (CUNY) CISC 7312X September 3, 2025 8 / 16



Design Consideration

Applications are restricted:
▶ No interaction or state (other than via intermediate output) among

Map/Reduce tasks.
▶ One Map/Reduce pattern for data flow.
▶ No real-time or streaming processing.

H. Chen (CUNY) CISC 7312X September 3, 2025 9 / 16



Distributed File System

▶ There is a need to split files over many servers, many disks, in a fixed
size chunk

▶ There is need to support parallel read/write
▶ There is a need to tolerate data access failures (disk failures/network

failures)

H. Chen (CUNY) CISC 7312X September 3, 2025 10 / 16



MapReduce Coordinator

▶ Send Map tasks to worker servers until all Map tasks complete
▶ A Map task splits its output, by hash(key) mod R, into one file to local

disk
▶ This file will serve as input for a Reduce task

▶ After all Map tasks have finished, the coordinator starts Reduce tasks
▶ Each Reduce task corresponds to one hash bucket of intermediate

output
▶ Each Reduce task fetches its bucket from every Map worker
▶ Each Reduce task writes a separate output file

H. Chen (CUNY) CISC 7312X September 3, 2025 11 / 16



Evaluation

▶ What is the performance bottleneck?

H. Chen (CUNY) CISC 7312X September 3, 2025 12 / 16



Network Use

▶ Map tasks usually read inputs from local computers – no network use
▶ Intermedia data are transmitted only once over the network – Reduce

workers read from over the network
▶ Reduce task unit’s input is a hash bucket – big network transfers are

more efficient

H. Chen (CUNY) CISC 7312X September 3, 2025 13 / 16



Load Balancing

Keep servers busy
▶ Many more tasks than workers
▶ Coordinator assigns new tasks to free workers
▶ Coordinator gives more tasks to fast servers, and less work to slow

servers

H. Chen (CUNY) CISC 7312X September 3, 2025 14 / 16



Fault Tolerance

We want to hide failures from the application programmer – reruns just
the failed Map and Reduce tasks
▶ Worker crashes: coordinator re-assigns tasks to other workers
▶ Worker is slow: coordinator re-assigns its task to another worker
▶ Worker returns incorrect output: too bad, MapReduce system

assumes “fail-stop” CPUs and software
▶ Coordinator crashes: too bad, MapReduce system assumes “fail-stop”

CPUs and software

H. Chen (CUNY) CISC 7312X September 3, 2025 15 / 16



Conclusion

It makes cluster computation easier for programmers.
▶ Advantage: Scales well and easy to program
▶ But not the most efficient and flexible

Chambers, Craig, Ashish Raniwala, Frances Perry, Stephen Adams, Robert
R. Henry, Robert Bradshaw, and Nathan Weizenbaum. "FlumeJava: easy,
efficient data-parallel pipelines." ACM Sigplan Notices 45, no. 6 (2010):
363-375.

H. Chen (CUNY) CISC 7312X September 3, 2025 16 / 16


