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Computers can fail!

Let's consider a large computational cluster of 5,000 computers, what is
the average number of computers failing daily?
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Computers can fail!

Let's consider a large computational cluster of 5,000 computers, what is
the average number of computers failing daily?

Assuming 3% of the computers fail annually, we have:
5000 x 0.03 = 150

So, on average, 150/365 &~ 0.41 computers fail daily.

For real-life failure rate, check out:

PC Reliability Study — Workstation Overview (2019)
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https://static.lenovo.com/ww/docs/thinkstation/TBR_Lenovo_PC_Reliability_Study_Workstation_Overview_01182019.pdf

|
Problem: Providing high availability despite failures

Complete the computational task even if some computers fail.

Solution: Replication ... (meaning?)
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Any failures?

Replication may not be a solution for all failures.
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A classification of failures (Failure Model)

Crash failure
Omission failure
Transient failure
Software failure
Security failure

Byzantine failure
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Temporal failure
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Crash failure

A component experiences a sudden and complete loss of functionality. The
failure is irreversible.

> A computer stops working, and does not respond to any request.
> A network link goes down, and no messages can be sent or received.

» A disk drive fails, and no data can be read from or written to it.
Fail-stop failure is a simple abstraction that mimics crash failure
» Implementations of fail-stop behavior help detect which component

has failed.

Replication can help fail-stop failure
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Omission failure

Often seen in networks, e.g., message lost in transit, which can be the
result of various causes:

» Transmitter malfunction
» Network buffer overflow
> Packet collisions (link layer)

> Wireless receiver out of range
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Transient failure

Failures occur temporarily and may resolve on their own.

» They are often caused by transient environmental conditions
(arbitrary perturbation of the global state)

» Can be induced by power surge, weak batteries, lightning, radio
frequency interfaces, cosmic rays etc.

» Heisenbug is a type of transient failure in software.

Transient failures can be challenging to reproduce and diagnose.
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https://en.wikipedia.org/wiki/Heisenbug

Software failure

Software bugs are the most common cause of system failures.

» Software bugs can be introduced during development, testing, or
maintenance.

» They can be caused by human error, miscommunication, or lack of
understanding of the system requirements.

» Software failures can lead to system crashes, data corruption, security
vulnerabilities, and other issues.
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Security failure

Security failures occur when a system is compromised by an attacker.

» They can be caused by vulnerabilities in the system, such as weak
passwords, unpatched software, or misconfigured settings.

» Security failures can lead to data breaches, identity theft, financial
loss, and other issues.

P> They can be difficult to detect and prevent, as attackers are
constantly evolving their tactics and techniques.
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Byzantine failure

Arbitrary failures that can produce any kind of erroneous behavior,
including malicious behavior.

> A component may fail and then later recover, but it may not
remember its previous state.

» A component may send conflicting or incorrect information to
different parts of the system.

> A component may behave in a way that is inconsistent with the
system’s specifications or requirements.

Byzantine failures are particularly challenging to handle because they can
be difficult to detect and diagnose.
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Temporal failure

A component may be correct, but it may not respond within the required
time frame.

> A real-time system may fail to meet its deadlines, leading to missed
opportunities or lost data.

P> A distributed system may experience delays in communication or
processing, leading to inconsistencies or errors.

P> A user interface may become unresponsive or slow, leading to
frustration or confusion.

Temporal failures can be caused by a variety of factors, including hardware
limitations, software bugs, network congestion, and user behavior.
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Replication: When does it help?

Creating copies of data or services on different nodes.
Replication can help with: fail-stop failures
Replication may not help with: Byzantine Failures

Is there a formal proof for this claim?
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How to realize replication?

P Replicated state machine
> State transfer
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Replicated state machine

Primary/backup: clients send operations to the primary, the primary
produces sequences of inputs/steps and sends to backups

» Each replica is a deterministic state machine.
> All replicas start in the same initial state.
» All replicas process the same sequence of inputs in the same order.

» All replicas produce the same sequence of outputs.
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State transfer

Replicate the state of a component to another component.

» Periodically transfer the entire state of a component to another
component.

» Transfer only the changes made to the state since the last transfer.

» Use a combination of periodic and incremental transfers to keep the
replicas up-to-date.
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Case Studies

Study the papers: Scales, Nelson, and Venkitachalam, “The design of a
practical system for fault-tolerant virtual machines”; Schneider,

“Implementing fault-tolerant services using the state machine approach: A
tutorial”

[§ Scales, Daniel J, Mike Nelson, and Ganesh Venkitachalam. “The
design of a practical system for fault-tolerant virtual machines”. In:
ACM SIGOPS Operating Systems Review 44.4 (2010), pp. 30-39.

[4 Schneider, Fred B. “Implementing fault-tolerant services using the
state machine approach: A tutorial”. In: Acm Computing Surveys
(CSUR) 22.4 (1990), pp. 299-319.
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