Facult Tolerance via Replication J

Hui Chen @

2CUNY Brooklyn College

September 17, 2025

H. Chen (CUNY) CISC 7312X September 17, 2025 1/18



Computers can fail!

Let's consider a large computational cluster of 5,000 computers, what is
the average number of computers failing daily?

H. Chen (CUNY) CISC 7312X September 17, 2025 2/18



Computers can fail!

Let's consider a large computational cluster of 5,000 computers, what is
the average number of computers failing daily?

Assuming 3% of the computers fail annually, we have:
5000 x 0.03 = 150

So, on average, 150/365 &~ 0.41 computers fail daily.

For real-life failure rate, check out:

PC Reliability Study — Workstation Overview (2019)

H. Chen (CUNY) CISC 7312X September 17, 2025 3/18


https://static.lenovo.com/ww/docs/thinkstation/TBR_Lenovo_PC_Reliability_Study_Workstation_Overview_01182019.pdf

|
Problem: Providing high availability despite failures

Complete the computational task even if some computers fail.

Solution: Replication ... (meaning?)

H. Chen (CUNY) CISC 7312X September 17, 2025 4/18



-
Any failures?

Replication may not be a solution for all failures.

H. Chen (CUNY) CISC 7312X September 17, 2025 5/18



A classification of failures (Failure Model)

Crash failure
Omission failure
Transient failure
Software failure
Security failure

Byzantine failure

vVVvyVvyVvyVvyYVvyy

Temporal failure

H. Chen (CUNY) CISC 7312X September 17, 2025 6/18



Crash failure

A component experiences a sudden and complete loss of functionality. The
failure is irreversible.

> A computer stops working, and does not respond to any request.
> A network link goes down, and no messages can be sent or received.

» A disk drive fails, and no data can be read from or written to it.
Fail-stop failure is a simple abstraction that mimics crash failure
» Implementations of fail-stop behavior help detect which component

has failed.

Replication can help fail-stop failure

H. Chen (CUNY) CISC 7312X September 17, 2025 7/18



Omission failure

Often seen in networks, e.g., message lost in transit, which can be the
result of various causes:

» Transmitter malfunction
» Network buffer overflow
> Packet collisions (link layer)

> Wireless receiver out of range

H. Chen (CUNY) CISC 7312X September 17, 2025 8/18



Transient failure

Failures occur temporarily and may resolve on their own.

» They are often caused by transient environmental conditions
(arbitrary perturbation of the global state)

» Can be induced by power surge, weak batteries, lightning, radio
frequency interfaces, cosmic rays etc.

» Heisenbug is a type of transient failure in software.

Transient failures can be challenging to reproduce and diagnose.

H. Chen (CUNY) CISC 7312X September 17, 2025 9/18


https://en.wikipedia.org/wiki/Heisenbug

Software failure

Software bugs are the most common cause of system failures.

» Software bugs can be introduced during development, testing, or
maintenance.

» They can be caused by human error, miscommunication, or lack of
understanding of the system requirements.

» Software failures can lead to system crashes, data corruption, security
vulnerabilities, and other issues.

H. Chen (CUNY) CISC 7312X September 17, 2025 10/18



Security failure

Security failures occur when a system is compromised by an attacker.

» They can be caused by vulnerabilities in the system, such as weak
passwords, unpatched software, or misconfigured settings.

» Security failures can lead to data breaches, identity theft, financial
loss, and other issues.

P> They can be difficult to detect and prevent, as attackers are
constantly evolving their tactics and techniques.

H. Chen (CUNY) CISC 7312X September 17, 2025 11/18



Byzantine failure

Arbitrary failures that can produce any kind of erroneous behavior,
including malicious behavior.

> A component may fail and then later recover, but it may not
remember its previous state.

» A component may send conflicting or incorrect information to
different parts of the system.

> A component may behave in a way that is inconsistent with the
system’s specifications or requirements.

Byzantine failures are particularly challenging to handle because they can
be difficult to detect and diagnose.

H. Chen (CUNY) CISC 7312X September 17, 2025 12/18



Temporal failure

A component may be correct, but it may not respond within the required
time frame.

> A real-time system may fail to meet its deadlines, leading to missed
opportunities or lost data.

P> A distributed system may experience delays in communication or
processing, leading to inconsistencies or errors.

P> A user interface may become unresponsive or slow, leading to
frustration or confusion.

Temporal failures can be caused by a variety of factors, including hardware
limitations, software bugs, network congestion, and user behavior.

H. Chen (CUNY) CISC 7312X September 17, 2025 13/18



-
Replication: When does it help?

Creating copies of data or services on different nodes.
Replication can help with: fail-stop failures
Replication may not help with: Byzantine Failures

Is there a formal proof for this claim?

H. Chen (CUNY) CISC 7312X September 17, 2025 14 /18



How to realize replication?

P Replicated state machine
> State transfer

H. Chen (CUNY) CISC 7312X September 17, 2025 15/18



Replicated state machine

Primary/backup: clients send operations to the primary, the primary
produces sequences of inputs/steps and sends to backups

» Each replica is a deterministic state machine.
> All replicas start in the same initial state.
» All replicas process the same sequence of inputs in the same order.

» All replicas produce the same sequence of outputs.

H. Chen (CUNY) CISC 7312X September 17, 2025 16 /18



State transfer

Replicate the state of a component to another component.

» Periodically transfer the entire state of a component to another
component.

» Transfer only the changes made to the state since the last transfer.

» Use a combination of periodic and incremental transfers to keep the
replicas up-to-date.

H. Chen (CUNY) CISC 7312X September 17, 2025 17 /18



N
Case Studies

Study the papers: Scales, Nelson, and Venkitachalam, “The design of a
practical system for fault-tolerant virtual machines”; Schneider,

“Implementing fault-tolerant services using the state machine approach: A
tutorial”

[§ Scales, Daniel J, Mike Nelson, and Ganesh Venkitachalam. “The
design of a practical system for fault-tolerant virtual machines”. In:
ACM SIGOPS Operating Systems Review 44.4 (2010), pp. 30-39.

[4 Schneider, Fred B. “Implementing fault-tolerant services using the
state machine approach: A tutorial”. In: Acm Computing Surveys
(CSUR) 22.4 (1990), pp. 299-319.

H. Chen (CUNY) CISC 7312X September 17, 2025 18/18



	References

