Threads and Multithread Model

Hui Chen ^a

^aCUNY Brooklyn College

March 13, 2025

- Overview and Motivation
- 2 Multithread Architecture
- 3 Parallelism and Multicore Programming
- Thread Model
- **5** Thread Libraries and APIs

Overview and Motivation

- 2 Multithread Architecture
- 3 Parallelism and Multicore Programming
- Thread Model
- 5 Thread Libraries and APIs

Process

Recall our discussion that multiple processes run concurrently ...

- ▶ P_1 on CPU, context switch, P_2 on CPU, context switch, P_3 on CPU
- The OS save the context of the current process, and load the context of the next process ...
- The OS maintains Process Control Blocks (PCB) for the processes where a process consists of,
 - an execution context, and
 - an address space (program text, data, stack, and heap).

What are the implications from the user's perspective?

Observing example programs using fork and clone.

Process and Threads

How about we let a process have

- multiple execution contexts, and
- an address space (program text, data, stack, and heap)?

What are the implications from the user's perspective?

Observing example programs using clone.

4/14

Benefits of Threads

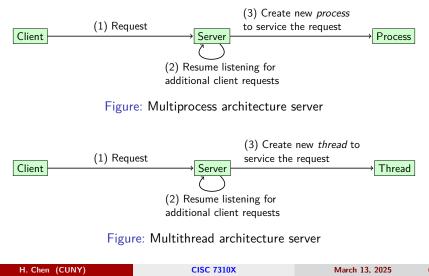
Can ease resource sharing (a single address space)

Example. Consider writing an application that has multiple *cooperating* processes vs. multiple *cooperating* threads

Can be made more economic (less overhead)

Example. Consider the *cost of creating* multiple processes vs. multiple threads

- Can be more scalable (to multicore architecture)
 Example. Consider creating a parallel program.
- Can improve responsiveness


Example. Consider a GUI program.

- Overview and Motivation
- 2 Multithread Architecture
- 3 Parallelism and Multicore Programming
 - Thread Model
 - 5 Thread Libraries and APIs

6/14

Multithread vs Multiprocess Architecture

A programming model (thread-per-request or process-per-request).

Discussion Question

- 1. What benefits can we obtain from multithread architecture, but not from multiprocess architecture?
- 2. What benefits can we obtain from multiprocess architecture, but not from multithread architecture?

Let's analyze a few examples ...

- **1** Overview and Motivation
- 2 Multithread Architecture

3 Parallelism and Multicore Programming

4 Thread Model

5 Thread Libraries and APIs

Concurrency and Parallelism

Discuss,

- What concurrency is?
- What parallelism is?

8/14

Data and Task Parallelism

- Data parallelism. Distributes subsets of the same data across multiple cores, same operation on each
- Task parallelism. Distributing threads across cores, each thread performing unique operation

Amdahl's Law

speedup
$$= rac{1}{S + rac{1-S}{N}}$$

where S is serial portion and N processing cores

It identifies performance gains from adding additional cores to an application that has both serial and parallel components

Let's examine a few examples ...

- Estimate the speed-up factor
- Estimate the serial portion or the parallel portion

(1)

Multicore Programming

Multicore or multiprocessor systems putting pressure on programmers, challenges include:

- Dividing activities
- Balance
- Data splitting
- Data dependency
- Testing and debugging

- **1** Overview and Motivation
- 2 Multithread Architecture
- 3 Parallelism and Multicore Programming
- Thread Model
 - 5 Thread Libraries and APIs

Kernel and User Threads

- Kernel threads
 - Management done by the kernel
 - TCBs in the kernel
 - User threads can be blocked by the process, less concurrency, in particular, on multiprocessor/multicore systems
- User threads.
 - Management done by user-level threads library.
 - Thread Control Blocks (TCBs) in user process
 - Kernel threads are more expensive to create, and can support multiple processors

But how much more?

Multithreading Models

- One-to-One (1 user thread / 1 kernel thread)
 - Most OSes, such as Linux and Windows
- Many-to-One (N user threads / 1 kernel thread)
 - ► User level threads library, such as Green Threads in early Java.
- Many-to-Many (M user threads / N kernel threads)
 - Early versions of Sun Solaris Operating System
 - Java Virtual Threads (JDK 21)
 - Goroutines

- **1** Overview and Motivation
- 2 Multithread Architecture
- 3 Parallelism and Multicore Programming
- 4 Thread Model
- 5 Thread Libraries and APIs

Thread Libraries and APIs

- Explicit vs. implicit threads
- Kernel vs. user threads
- Thread library and API examples
 - (UNIX) POSIX threads (Pthread)
 - Windows threads
 - Java threads
- Implicit threads examples
 - Android thread pools
 - Windows thread pools
 - Java thread pools (Executors)
 - Fork-Join
 - Java fork-join API (ForkJoinPool)
 - OpenMP
 - Grand Central Dispatch (OS X)
 - Intel thread building blocks