
Process Synchronization

Hui Chen a

aCUNY Brooklyn College

October 30, 2024

H. Chen (CUNY) CISC 7310X October 30, 2024 1 / 26

Outline

1 Race Condition
Concept
Examples
Experiment

2 Critical Section Problem

3 Synchronization Tool
Concept of Lock
Mutex Locks and Semaphores
Using Mutex Locks and Semaphores
Implementation of Mutex Locks and Semaphores

4 Monitor and Condition Variable

5 Events vs. Threads

H. Chen (CUNY) CISC 7310X October 30, 2024 2 / 26

Race Condition

Outline

1 Race Condition
Concept
Examples
Experiment

2 Critical Section Problem

3 Synchronization Tool
Concept of Lock
Mutex Locks and Semaphores
Using Mutex Locks and Semaphores
Implementation of Mutex Locks and Semaphores

4 Monitor and Condition Variable

5 Events vs. Threads

H. Chen (CUNY) CISC 7310X October 30, 2024 3 / 26

Race Condition Concept

Race Condition

Without orderly executation of cooperating processes (or threads),
concurrent access to shared data may result in data inconsistency, called
race condition.

H. Chen (CUNY) CISC 7310X October 30, 2024 3 / 26

Race Condition Examples

Producer-Consumer Problem

▶ Let’s consider the following solution to the Producer-Consumer
problem where we use a counter to track buffer use.

Shared Buffer
1 # define BUFFER_SIZE 10
2 typedef struct { } item;
3
4 // The following are shared among cooperating processes
5 item buffer [BUFFER_SIZE];
6 int in = 0;
7 int out = 0;
8 int counter = 0;

Producer
1 while (true) {
2 /* produce an item in next produced */
3 while (counter == BUFFER_SIZE)
4 ; /* do nothing */
5 buffer [in] = next_produced ;
6 in = (in + 1) % BUFFER_SIZE ;
7 counter ++;
8 }

Consumer
1 while (true) {
2 while (counter == 0)
3 ; /* do nothing */
4 next_consumed = buffer [out];
5 out = (out + 1) % BUFFER_SIZE ;
6 counter --;
7 /* consume the item in next consumed

*/
8 }

H. Chen (CUNY) CISC 7310X October 30, 2024 4 / 26

Race Condition Examples

Counter and Machine Code

▶ Assume the compiler generates the machine code whose pseudo-code
is as follows,

▶ counter ++
1 register1 = counter
2 register1 = register1 + 1
3 counter = register1

▶ counter –
1 register2 = counter
2 register2 = register2 - 1
3 counter = register2

H. Chen (CUNY) CISC 7310X October 30, 2024 5 / 26

Race Condition Examples

Program Execution Scenario

▶ Context switches happen and result in the following sequence of
execution

1 S0: producer execute register1 = counter // { register1 = 5}
2 S1: producer execute register1 = register1 + 1 // { register1 = 6}
3 S2: consumer execute register2 = counter // { register2 = 5}
4 S3: consumer execute register2 = register2 - 1 // { register2 = 4}
5 S4: producer execute counter = register1 // { counter = 6}
6 S5: consumer execute counter = register2 // { counter = 4}

H. Chen (CUNY) CISC 7310X October 30, 2024 6 / 26

Race Condition Examples

Getting Available Process ID

Let’s consider the design of the fork() system call in the OS kernel.
▶ The OS kernel creates child processs using the fork() system call and

assigns the process a unique process ID.
1 int fork () {
2 ...
3 pcb.pid = get_next_available_pid ();
4 ...
5 }

▶ Consider two processes P1 and P2 are calling fork() to create two
child processes.

▶ Can the OS kernel assign the same pid to the two child processes
(without proper synchronization)?

H. Chen (CUNY) CISC 7310X October 30, 2024 7 / 26

Race Condition Experiment

More Examples

Let’s do a couple of experiments and observer race conditions...
1. Incrementing an integer in multiple Java threads
2. Simulating next_available_pid()

3. Simulating the producer-consumer problem using shared memory
(without proper synchronization)

4. Reading and writing to global variables in two threads.

H. Chen (CUNY) CISC 7310X October 30, 2024 8 / 26

Race Condition Experiment

Incrementing an integer in multiple Java threads

If you choose to download, compile, and run it in the Linux system, follow
these steps

1 sudo apt -get install -y default -jdk
2 mkdir IncrementInt
3 cd IncrementInt
4 wget https :// raw. githubusercontent .com/huichen -

cs/ OSClassExamples / master / synchronization /
racecond / incrementint / IncrementInt .java

5 javac IncrementInt .java
6 java IncrementInt

H. Chen (CUNY) CISC 7310X October 30, 2024 9 / 26

Critical Section Problem

Outline

1 Race Condition
Concept
Examples
Experiment

2 Critical Section Problem

3 Synchronization Tool
Concept of Lock
Mutex Locks and Semaphores
Using Mutex Locks and Semaphores
Implementation of Mutex Locks and Semaphores

4 Monitor and Condition Variable

5 Events vs. Threads

H. Chen (CUNY) CISC 7310X October 30, 2024 10 / 26

Critical Section Problem

Critical Section Problem

▶ Consider system of n processes {P0, P1, . . . , Pn−1}
▶ Each process has critical section segment of code where the process

may be changing common variables, updating table, writing file, etc.
▶ When one process in critical section, no other may be in its critical

section
▶ The critical section problem is to design protocol to solve this

▶ Each process must ask permission to enter critical section in entry
section, may follow critical section with exit section, then remainder
section

H. Chen (CUNY) CISC 7310X October 30, 2024 10 / 26

Critical Section Problem

General Structure of Processes with Critical Section

1 do {
2 // entry section
3 ...
4 // critical section
5 ...
6 // exit section
7 ...
8 // remainder section
9 ...

10 } while (true);

H. Chen (CUNY) CISC 7310X October 30, 2024 11 / 26

Critical Section Problem

Assumptions and Requirement

▶ Assumptions
1. Assume that processes execute at a nonzero speed.
2. There is no assumption concerning relative speed of the processes.

▶ Requirements
1. Mutual exclusion.

If process Pi is executing in its critical section, then no other processes
can be executing in their critical sections.

2. Progress.
If no process is executing in its critical section and there exist some
processes that wish to enter their critical section, then the selection of
the processes that will enter the critical section next cannot be
postponed indefinitely

3. Bounded waiting.
A bound must exist on the number of times that other processes are
allowed to enter their critical sections after a process has made a
request to enter its critical section and before that request is granted.

H. Chen (CUNY) CISC 7310X October 30, 2024 12 / 26

Synchronization Tool

Outline

1 Race Condition
Concept
Examples
Experiment

2 Critical Section Problem

3 Synchronization Tool
Concept of Lock
Mutex Locks and Semaphores
Using Mutex Locks and Semaphores
Implementation of Mutex Locks and Semaphores

4 Monitor and Condition Variable

5 Events vs. Threads

H. Chen (CUNY) CISC 7310X October 30, 2024 13 / 26

Synchronization Tool Concept of Lock

▶ Generally speaking, any solution to the critical-section problem is to
construct a simple tool, called a “lock“

▶ A process must acquire a lock before entering a critical section, and
releases the lock when it exits the critical section

H. Chen (CUNY) CISC 7310X October 30, 2024 13 / 26

Synchronization Tool Concept of Lock

Solution to Critical-section Problem Using Locks

▶ Let’s compare the following two pseudo-code snippets,
General structure of a process
with critical section

1 do {
2 // entry section
3 ...
4 // critical section
5 ...
6 // exit section
7 ...
8 // remainder section
9 ...

10 } while (true);

General solution to Critical
Section problem using locks

1 do {
2 // acquire lock
3 ...
4 // critical section
5 ...
6 // release lock
7 ...
8 // remainder section
9 ...

10 } while (true);

H. Chen (CUNY) CISC 7310X October 30, 2024 14 / 26

Synchronization Tool Mutex Locks and Semaphores

Mutex Locks and Semaphores

▶ Mutex locks.
▶ Using a Boolean variable to indicate if the lock is available or not.
▶ Defining two operations, acquire() and release() to acquire and

release the lock
▶ acquire() and release() must be atomic (indivisible)

▶ Semaphores.
▶ Using an integer variable indicates if the lock is available or not.
▶ Defining two operations, wait() (or P(), or down()) and signal()

(or V() or up()) to acquire and release the lock
▶ wait() (or P()) must be atomic.
▶ Counting semaphore. The integer value can range over an unrestricted

domain.
▶ Binary semaphore. The integer value can range only between 0 and 1,

essentially, a Mutex lock.

H. Chen (CUNY) CISC 7310X October 30, 2024 15 / 26

Synchronization Tool Using Mutex Locks and Semaphores

Mutual Exclusion via Mutex Locks

Let’s increment a shared variable in multiple processes/threads ...

H. Chen (CUNY) CISC 7310X October 30, 2024 16 / 26

Synchronization Tool Using Mutex Locks and Semaphores

Mutual Exclusion via Semaphores

Let’s increment a shared variable in multiple processes/threads ...

H. Chen (CUNY) CISC 7310X October 30, 2024 17 / 26

Synchronization Tool Using Mutex Locks and Semaphores

Control Execution Using Semaphores

Let’s consider P1 and P2 that require S1 in P1 to happen before S2 in P2
...

1. Create a semaphore “synch” initialized to 0
2. Implement P1 as follows,

1 S1;
2 signal (synch);

3. Implement P2 as follows,

1 wait(synch);
2 S2;

Question. Can we realize the above using a Multex lock instead?

H. Chen (CUNY) CISC 7310X October 30, 2024 18 / 26

Synchronization Tool Implementation of Mutex Locks and Semaphores

Implementation of Mutex Locks

▶ Mutex locks. An implementation of acquire() and release() is via
hardware atomic instructions such as compare-and-swap and
test-and-set.

▶ This implementation of Mutex locks requires busy waiting. We call a
Mutex lock whose implementation requires busy-waiting a spinlock.

1 acquire () {
2 while (! available)
3 ; /* busy wait */
4 available = false;
5 }
6
7 release () {
8 available = true;
9 }

H. Chen (CUNY) CISC 7310X October 30, 2024 19 / 26

Synchronization Tool Implementation of Mutex Locks and Semaphores

Implementation of Semaphores

Let’s consider an implementation without busy waiting ...
1 // S-> list is a list of processes that are in the sleeping state
2 wait(semaphore *S) {
3 S->value --;
4 if (S-> value < 0) {
5 // add this process to S-> list ;
6 S->list.add(this_process);
7 block ();
8 }
9 }

10
11 signal (semaphore *S) {
12 S-> value ++;
13 if (S-> value <= 0) {
14 // remove a process P from S-> list ;
15 S->list. remove (P);
16 wakeup (P);
17 }
18 }

H. Chen (CUNY) CISC 7310X October 30, 2024 20 / 26

Monitor and Condition Variable

Outline

1 Race Condition
Concept
Examples
Experiment

2 Critical Section Problem

3 Synchronization Tool
Concept of Lock
Mutex Locks and Semaphores
Using Mutex Locks and Semaphores
Implementation of Mutex Locks and Semaphores

4 Monitor and Condition Variable

5 Events vs. Threads

H. Chen (CUNY) CISC 7310X October 30, 2024 21 / 26

Monitor and Condition Variable

Monitor

▶ It is easy to make mistakes when using semaphores.
▶ To reduce such mistakes, introduce Monitor.

▶ A high-level abstraction that provides a convenient and effective
mechanism for process synchronization

▶ An Abstract Data Type, internal variables only accessible by code
within the procedure

▶ Only one process may be active within the monitor at a time

H. Chen (CUNY) CISC 7310X October 30, 2024 21 / 26

Monitor and Condition Variable

Condition Variable

Conditional variables are introduced to address several issues:
▶ to avoid busy-waiting using synchronization mechanism like mutex

locks,
▶ to use/share a single lock for a common, but subtly different

synchronization needs.
Two operations are allowed on a condition variable:
▶ x.wait(). A process that invokes the operation is suspended until

x.signal()
▶ x.signal(). Resumes one of processes (if any) that invoked

x.wait(); however, if no x.wait() on the variable, then it has no
effect on the variable

H. Chen (CUNY) CISC 7310X October 30, 2024 22 / 26

Monitor and Condition Variable

Further Study

▶ Example programs
▶ OS examples
▶ Implementations
▶ ...

H. Chen (CUNY) CISC 7310X October 30, 2024 23 / 26

Events vs. Threads

Outline

1 Race Condition
Concept
Examples
Experiment

2 Critical Section Problem

3 Synchronization Tool
Concept of Lock
Mutex Locks and Semaphores
Using Mutex Locks and Semaphores
Implementation of Mutex Locks and Semaphores

4 Monitor and Condition Variable

5 Events vs. Threads

H. Chen (CUNY) CISC 7310X October 30, 2024 24 / 26

Events vs. Threads

Events vs. Threads

There have been a recurrent discussion on how we should realize
concurrency [2, 3, 4, 6, 5]
▶ Threads vs. events [2, 4, 6, 5]
▶ Theory vs. practice ([1, Section 9.1], [3])

H. Chen (CUNY) CISC 7310X October 30, 2024 24 / 26

Events vs. Threads

Reference I

[1] Brian Goetz et al. Java concurrency in practice. Pearson Education,
2006.

[2] Hugh C Lauer and Roger M Needham. “On the duality of operating
system structures”. In: ACM SIGOPS Operating Systems Review 13.2
(1979), pp. 3–19.

[3] John Ousterhout. “Why threads are a bad idea (for most purposes)”.
In: Presentation given at the 1996 Usenix Annual Technical
Conference. Vol. 5. San Diego, CA, USA. 1996.

[4] J Robert Von Behren, Jeremy Condit, and Eric A Brewer. “Why
Events Are a Bad Idea (for High-Concurrency Servers).”. In: HotOS.
2003, pp. 19–24.

H. Chen (CUNY) CISC 7310X October 30, 2024 25 / 26

Events vs. Threads

Reference II

[5] Rob Von Behren et al. “Capriccio: scalable threads for internet
services”. In: ACM SIGOPS Operating Systems Review 37.5 (2003),
pp. 268–281.

[6] Matt Welsh, David Culler, and Eric Brewer. “SEDA: an architecture
for well-conditioned, scalable internet services”. In: ACM SIGOPS
Operating Systems Review 35.5 (2001), pp. 230–243.

H. Chen (CUNY) CISC 7310X October 30, 2024 26 / 26

	Race Condition
	Concept
	Examples
	Experiment

	Critical Section Problem
	Synchronization Tool
	Concept of Lock
	Mutex Locks and Semaphores
	Using Mutex Locks and Semaphores
	Implementation of Mutex Locks and Semaphores

	Monitor and Condition Variable
	Events vs. Threads
	References

