
OS Interfaces, Services, and Structures

Hui Chen a

aCUNY Brooklyn College

September 4, 2024

H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 1 / 34



Outline

1 Objectives

2 OS Operations

3 OS Services

4 OS User Interface

5 OS Programmer Interface (System Calls)

6 OS Design and Structures

7 OS Debugging and Monitoring

H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 2 / 34



Objectives

Outline

1 Objectives

2 OS Operations

3 OS Services

4 OS User Interface

5 OS Programmer Interface (System Calls)

6 OS Design and Structures

7 OS Debugging and Monitoring

H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 3 / 34



Objectives

Objectives

▶ Identify services provided by an operating system
▶ Use system calls to access operating system services
▶ Use user interface to access operating systems
▶ Compare and contrast monolithic, layered, microkernel, modular, and

hybrid strategies for designing operating systems.
▶ Apply tools for monitoring operating system performance.
▶ Design and implement kernel modules for interacting with a Linux

kernel.

H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 3 / 34



OS Operations

Outline

1 Objectives

2 OS Operations

3 OS Services

4 OS User Interface

5 OS Programmer Interface (System Calls)

6 OS Design and Structures

7 OS Debugging and Monitoring

H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 4 / 34



OS Operations

Interrupt Driven Operations

OSes are driven by interrupts (software and hardware)
▶ Hardware interrupt by one of the devices
▶ Software interrupt (exception or trap):

▶ Software error (e.g., division by zero)
▶ Request for operating system service (system calls)
▶ Other process problems include infinite loop, processes modifying each

other or the operating system

H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 4 / 34



OS Operations

Dual-mode Operations

OSes operate in two modes (dual-mode operation) in order to allows OSes
to protect themselves and other system components (from what?)
▶ User mode and kernel mode

▶ Mode bit provided by hardware
▶ Provides ability to distinguish when system is running user code or

kernel code
▶ Some instructions designated as privileged, only executable in kernel

mode
▶ System call (OS services provided by OS kernel) changes mode to

kernel, return from call resets it to user
▶ Increasingly CPUs support multi-mode operations i.e. virtual machine

manager (VMM) mode for guest VMs

H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 5 / 34



OS Operations

Start-up of OSes (Bootstrap/Boot)

Bootstrap program is loaded at power-up or reboot
▶ Typically stored in ROM or EPROM, generally known as firmware
▶ Initializes all aspects of system
▶ Loads operating system kernel and starts execution

Let’s do an exercise ...

H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 6 / 34



OS Services

Outline

1 Objectives

2 OS Operations

3 OS Services

4 OS User Interface

5 OS Programmer Interface (System Calls)

6 OS Design and Structures

7 OS Debugging and Monitoring

H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 7 / 34



OS Services

Overview of OS Services
56 Chapter 2 Operating-System Structures

user and other system programs

services

operating system

hardware

system calls

GUI touch screen

user interfaces

command line

program
execution

I/O
operations

file
systems communication resource

allocation accounting

protection
and

security

error
detection

Figure 2.1 A view of operating system services.

system to another, but we can identify common classes. Figure 2.1 shows one
view of the various operating-system services and how they interrelate. Note
that these services alsomake the programming task easier for the programmer.

One set of operating system services provides functions that are helpful to
the user.

• User interface. Almost all operating systems have a user interface (UI).
This interface can take several forms. Most commonly, a graphical user
interface (GUI) is used. Here, the interface is a window system with a
mouse that serves as a pointing device to direct I/O, choose from menus,
and make selections and a keyboard to enter text. Mobile systems such
as phones and tablets provide a touch-screen interface, enabling users to
slide their fingers across the screen or press buttons on the screen to select
choices. Another option is a command-line interface (CLI), which uses text
commands and a method for entering them (say, a keyboard for typing
in commands in a specific format with specific options). Some systems
provide two or all three of these variations.

• Program execution. The systemmust be able to load a program into mem-
ory and to run that program. The program must be able to end its execu-
tion, either normally or abnormally (indicating error).

• I/O operations. A running program may require I/O, which may involve a
file or an I/O device. For specific devices, special functions may be desired
(such as reading from a network interface or writing to a file system). For
efficiency and protection, users usually cannot control I/O devices directly.
Therefore, the operating system must provide a means to do I/O.

• File-system manipulation. The file system is of particular interest. Obvi-
ously, programsneed to read andwrite files anddirectories. They also need
to create and delete them by name, search for a given file, and list file infor-
mation. Finally, some operating systems include permissionsmanagement
to allowor deny access to files or directories based on file ownership.Many
operating systems provide a variety of file systems, sometimes to allow

Figure: A view of operating system services1.

1Silberschatz, Galvin, and Gagne, Operating system concepts.
H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 7 / 34



OS User Interface

Outline

1 Objectives

2 OS Operations

3 OS Services

4 OS User Interface

5 OS Programmer Interface (System Calls)

6 OS Design and Structures

7 OS Debugging and Monitoring

H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 8 / 34



OS User Interface

User Interface

▶ Command interpreters and command line interface
▶ Graphical user interface
▶ Touch-Screen interface
▶ Voice user interface
▶ Conversational user interface

H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 8 / 34



OS User Interface

Shell Scripts

▶ Shell Script. If a frequent task requires a set of command line steps,
those steps can be recorded into a file, and that file can be run just
like a program.

▶ The Shell Script program is not compiled into executable code but
rather is interpreted by the command-line interface

▶ Example Command Line Interpreters with programmability.
▶ Powershell on Windows2

▶ Bash on UNIX3

2Jones and Hicks, Learn Windows PowerShell 3 in a month of lunches.
3Newham and Rosenblatt, Learning the bash shell: Unix shell programming.

H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 9 / 34



OS User Interface

Bash Shell Script Example

Let’s count total number of lines of all asm files.

H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 10 / 34



OS User Interface

Choice of User Interface

Consider two perspectives, user perspective and system design perspective
▶ User perspective. Using a command-line or GUI interface can be one

of personal preference.
▶ Design perspective. System designers may consider multiple factors.

▶ Automation?
▶ Resources?
▶ Ease of use?
▶ Human errors?

“Although the interface equipment and principles used for the Therac-25 are
obsolete, there are still potential issues even with today’s more sophisticated
interface tools. Sometimes making the interface easy to use conflicts with safety
. . .
One general design principle is that actions to get into or maintain a safe state
should be easy to do. Actions that can lead to an unsafe state (hazard) should be
hard to do.”a

aLeveson, “The Therac-25: 30 Years Later”.
H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 11 / 34



OS Programmer Interface (System Calls)

Outline

1 Objectives

2 OS Operations

3 OS Services

4 OS User Interface

5 OS Programmer Interface (System Calls)

6 OS Design and Structures

7 OS Debugging and Monitoring

H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 12 / 34



OS Programmer Interface (System Calls)

System Calls

▶ System calls are the interface to the services made available by an
operating system.

▶ These calls are generally available as functions written mostly in C
and C++ and sometimes in an assembly language or using
assembly-language instructions
▶ For certain low-level tasks, e.g., tasks where hardware must be accessed

directly may have to be written using assembly-language instructions.

H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 12 / 34



OS Programmer Interface (System Calls)

System Call Example

Let’s take a look at the following example4

#include <unistd.h>

int main(int argc, char *argv[]) {
_exit(0);

}

Compile and disassemble 5

gcc -static-libgcc -static-pie -l:libc.a exitex.c -o exitex
objdump --disassemble exitex > exitex.asm

Then examine exitex.asm (look for _exit in exitex.asm)

4X86 Assembly/Interfacing with Linux.
5Tested on Debian Linux 10 and gcc 8.3.0

H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 13 / 34



OS Programmer Interface (System Calls)

Invoking System Calls

▶ System calls occur in different ways, depending on the computer in
use.
▶ For example, on Linux x86 systems, make a system call by calling

interrupt 0x80 using the int 0x80 command or by issuing the
sysenter instruction.

▶ We need to pass the identity of the desired system call and often
additional information to the OS.
▶ For example, to get input, we may need to specify the file or device to

use as the source, as well as the address and length of the memory
buffer into which the input should be read.

▶ On Linux x86 systems, we pass parameters by setting the general
purpose registers as following:

Syscall # Param 1 Param 2 Param 3 Param 4 Param 5 Param 6
eax ebx ecx edx esi edi ebp

Return value
eax
H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 14 / 34



OS Programmer Interface (System Calls)

Passing Parameters to OS for System Calls

There are 3 general methods to pass parameters to the operating system.
▶ (Register method) Passing the parameters in registers.
▶ (Block method) Passing the parameters stored in a block or a table in

memory, and passing the address of the block or the table as a
parameter in a register.
▶ Often using the combination of the two.
▶ For example, Linux uses this approach. If 5 or fewer parameters, use

the register method; otherwise, the block method.
▶ (Stack method) Passing parameters via stack. The program pushes

the parameters in a stack, and the OS pops the parameters off the
stack.

H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 15 / 34



OS Programmer Interface (System Calls)

Application Programming Interface

_exit(0);

▶ Application developers design programs according to an application
programming interface (API).

▶ The API specifies a set of functions that are available to an
application programmer.

▶ Example APIs.
▶ Windows API, POSIX API, and Java API

▶ A programmer accesses an API via a library of code provided by the
operating system.
▶ Example. The libc library in UNIX and Linux.

▶ The functions that make up an API typically invoke the actual system
calls on behalf of the application programmer.
▶ Windows API function CreateProcess() invokes the NTCreateProcess()

system call in the Windows kernel.
▶ libc API function open() invokes the open() system call in the Linux

kernel.
H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 16 / 34



OS Programmer Interface (System Calls)

Run-time Environment (RTE)

RTE is the full suite of software needed to execute applications written in
a given programming language, including
▶ its compilers or interpreters,
▶ libraries,
▶ loaders, and others

H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 17 / 34



OS Programmer Interface (System Calls)

RTE and System Calls

▶ The RTE provides a system call interface allowing programmers to
access system calls availed by the operating system.
▶ Each system call is typically assigned a system call number
▶ The system call interface maintains a table indexed according to the

system call numbers.
▶ The system call interface invokes the intended system call in the

operating-system kernel and returns the status of the system call.

H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 18 / 34



OS Programmer Interface (System Calls)

Linker and Loader
76 Chapter 2 Operating-System Structures

source
program

object
fileother

object
files

dynamically
linked

libraries

executable
file

program
in memory

compiler

linker

loader

main.c

main.o

main

./main

gcc -c main.c

gcc -o main main.o -lm

generates

generates

Figure 2.11 The role of the linker and loader.

command line on UNIX systems—for example, ./main—the shell first creates
a new process to run the program using the fork() system call. The shell then
invokes the loader with the exec() system call, passing exec() the name of
the executable file. The loader then loads the specified program into memory
using the address space of the newly created process. (When a GUI interface is
used, double-clicking on the icon associated with the executable file invokes
the loader using a similar mechanism.)

The process described thus far assumes that all libraries are linked into
the executable file and loaded into memory. In reality, most systems allow
a program to dynamically link libraries as the program is loaded. Windows,
for instance, supports dynamically linked libraries (DLLs). The benefit of this
approach is that it avoids linking and loading libraries that may end up not
being used into an executable file. Instead, the library is conditionally linked
and is loaded if it is required during program run time. For example, in Figure
2.11, the math library is not linked into the executable file main. Rather, the
linker inserts relocation information that allows it to be dynamically linked
and loaded as the program is loaded. We shall see in Chapter 9 that it is
possible for multiple processes to share dynamically linked libraries, resulting
in a significant savings in memory use.

Object files and executable files typically have standard formats that
include the compiled machine code and a symbol table containing metadata
about functions and variables that are referenced in the program. For UNIX
and Linux systems, this standard format is known as ELF (for Executable
and Linkable Format). There are separate ELF formats for relocatable and

Figure: The role of the linker and loader.6

6Silberschatz, Galvin, and Gagne, Operating system concepts.
H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 19 / 34



OS Programmer Interface (System Calls)

API Documentation on UNIX and Linux

Use man to query API documentation
▶ Example. Querying the documentation of the libc functions _exit()

exit(), and write().
man 2 _exit

man 3 exit

man 2 write
▶ The libc functions like write() are wrapper functions for the write()

system call, and sometimes, we don’t make a distinction of the two.

H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 20 / 34



OS Programmer Interface (System Calls)

UNIX Manual Pages

man man

1. Executable programs or shell commands
2. System calls (functions provided by the kernel)
3. Library calls (functions within program libraries)
4. Special files (usually found in /dev)
5. File formats and conventions eg /etc/passwd
6. Games
7. Miscellaneous (including macro packages and conventions), e.g.

man(7), groff(7)
8. System administration commands (usually only for root)
9. Kernel routines [Non-standard]

H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 21 / 34



OS Programmer Interface (System Calls)

Manual Pages for UNIX Manual Pages

man man
man 1 intro
man 2 intro
man 3 intro
...
man 8 intro
man 2 syscall
man 2 syscalls

H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 22 / 34



OS Programmer Interface (System Calls)

Types of System Calls

▶ Process control.
▶ create/terminate process, load, execute; get/set process attributes;

wait/signal event; allocate/free memory
▶ File management

▶ create/delete file; open, close; read, write, reposition; get/set file
attributes

▶ Device management
▶ request/release device; read, write, reposition; get/set device

attributes; logically attach or detach devices
▶ Information maintenance

▶ get/set time or date; get/set system data; get/set process, file, or
device attributes

▶ Communications
▶ create/delete communication connection; send/receive messages;

transfer status information; attach/detach remote devices
▶ Protection

▶ get/set file permissions
H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 23 / 34



OS Programmer Interface (System Calls)

Example Windows and Linux System Calls

Windows Unix

Process control
CreateProcess() fork()
ExitProcess() exit()
WaitForSingleObject() wait()

File management

CreateFile() open()
ReadFile() read()
WriteFile() write()
CloseHandle() close()

Device management
SetConsoleMode() ioctl()
ReadConsole() read()
WriteConsole() write()

Information maintenance
GetCurrentProcessID() getpid()
SetTimer() alarm()
Sleep() sleep()

Communications
CreatePipe() pipe()
CreateFileMapping() shm_open()
MapViewOfFile() mmap()

Protection
SetFileSecurity() chmod()
InitlializeSecurityDescriptor() umask()
SetSecurityDescriptorGroup() chown()

H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 24 / 34



OS Programmer Interface (System Calls)

Using System Calls and APIs in an Example Program

Write a CopyFile program to copy a file, e.g.,

CopyFile SourceFile.bin DestFile.bin

H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 25 / 34



OS Design and Structures

Outline

1 Objectives

2 OS Operations

3 OS Services

4 OS User Interface

5 OS Programmer Interface (System Calls)

6 OS Design and Structures

7 OS Debugging and Monitoring

H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 26 / 34



OS Design and Structures

Design and Implementation Consideration

▶ Design goals
▶ Policies vs mechanisms
▶ Implementation

H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 26 / 34



OS Design and Structures

OS Structures

▶ Monolithic structure, i.e., placing all of the functionality of the kernel
into a single, static binary file that runs in a single address space.

▶ Layered structure, i.e., breaking an OS into a number of layers
(levels), e.g., the bottom layer (layer 0) is the hardware, the highest
(layer N) is the user interface.

▶ Microkernel, i.e., removing all nonessential components from the
kernel and implementing them as user level programs that reside in
separate address spaces.

▶ Loadable kernel modules (LKM), i.e., the kernel has a set of core
components and can link in additional services via modules, either at
boot time or during run time.

▶ Hybrid systems.

H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 27 / 34



OS Design and Structures

Example Loadable Kernel Module in Linux

Device drivers often exist as loadable kernel modules in Linux systems. See
the tutorial for a simple character device driver.

H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 28 / 34



OS Debugging and Monitoring

Outline

1 Objectives

2 OS Operations

3 OS Services

4 OS User Interface

5 OS Programmer Interface (System Calls)

6 OS Design and Structures

7 OS Debugging and Monitoring

H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 29 / 34



OS Debugging and Monitoring

Failure Analysis

▶ Program failure.
▶ Using log files and core dumps. A core dump is a capture of the

memory of the process stored in a file for later analysis
▶ Using a debugger to probe running programs or core dumps.

▶ Kernel failure (called crash). When a crash occurs, OS kernel saves
error information to a log file and the memory state to a crash dump
(stored in a file).

H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 29 / 34



OS Debugging and Monitoring

Performance Tuning and Monitoring

Using counters and tracing.

H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 30 / 34



OS Debugging and Monitoring

Using Counters

▶ For example, on Linux systems,
▶ Per-Process

▶ ps reports information for a single process or selection of processes
▶ top reports real-time statistics for current processes

▶ System-Wide
▶ vmstat reports memory-usage statistics
▶ netstat reports statistics for network interfaces
▶ iostat reports I/O usage for disks 7

Most counter-based tools on Linux systems read statistics from the /proc
file system.

7On Debian Linux systems, run as root, apt-get install sysstat
H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 31 / 34



OS Debugging and Monitoring

Tracing

▶ For example, on Linux systems,
▶ Per-Process

▶ strace traces system calls invoked by a process 8

▶ ltrace traces library calls invoked by a process 9

▶ gdb is a source-level debugger
▶ System-Wide

▶ perf is a collection of Linux performance tools 10

▶ tcpdump collects network packets 11

8To install it, run as root, apt-get install strace
9To install it, run as root, apt-get install ltrace

10To install it, run as root, apt-get install linux-perf
11To install it, run as root, apt-get install tcpdump

H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 32 / 34



OS Debugging and Monitoring

Tracing Toolkits

▶ BCC stands for BPF Compiler Collection, a toolkit that provides
tracing features for Linux systems.

▶ BCC is a Python front end for eBPF (extended Berkeley Packet Filter)
▶ Developers have been leveraging eBPF to write kernel-mode

applications 12

12See discussion and presetantion at https://news.ycombinator.com/item?id=21691024
H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 33 / 34

https://news.ycombinator.com/item?id=21691024


OS Debugging and Monitoring

References I

Jones, Don and Jeffery Hicks. Learn Windows PowerShell 3 in a month
of lunches. Manning Publications Co., 2012.
Leveson, Nancy G. “The Therac-25: 30 Years Later”. In: Computer
50.11 (2017). Available:
https://ieeexplore.ieee.org/iel7/2/8102264/08102762.pdf, pp. 8–11.
Newham, Cameron and Bill Rosenblatt. Learning the bash shell: Unix
shell programming. 3rd edition. " O’Reilly Media, Inc.", 2009.
Silberschatz, Abraham, Peter B. Galvin, and Greg Gagne. Operating
system concepts. 10th edition. John Wiley & Sons, 2018.
X86 Assembly/Interfacing with Linux. Available: https:
//en.wikibooks.org/wiki/X86_Assembly/Interfacing_with_Linux,
retrieved on February 5, 2020.

H. Chen (CUNY) CISC 7310X-W6 September 4, 2024 34 / 34

https://ieeexplore.ieee.org/iel7/2/8102264/08102762.pdf
https://en.wikibooks.org/wiki/X86_Assembly/Interfacing_with_Linux
https://en.wikibooks.org/wiki/X86_Assembly/Interfacing_with_Linux

	Objectives
	OS Operations
	OS Services
	OS User Interface
	OS Programmer Interface (System Calls)
	OS Design and Structures
	OS Debugging and Monitoring
	References

