Inter-Process Communication (IPC) J

Hui Chen @

2CUNY Brooklyn College

October 16, 2024

H. Chen (CUNY) CISC 7310X October 16, 2024 1/17



Outline

© Motivation

@ IPC

@ Shared Memory
@ Message Passing

© Producer and Consumer Problem
@ UNIX (POSIX) and Windows IPC

© Sharing Data among Threads and Processes

H. Chen (CUNY) CISC 7310X October 16, 2024 2/17



. Motiation |
Outline

© Motivation

H. Chen (C ) CISC 7310X October 16, 2024 3/17



Independent or Cooperating Processes

Processes within a system may be independent or cooperating.
» Independent process cannot affect or be affected by the execution of
another process
» Cooperating process can affect or be affected by the execution of

another process

» Information sharing
» Computation speed-up
> Modularity

H. Chen (CUNY) CISC 7310X October 16, 2024 3/17



Multiprocess Architecture

Taking advantage of independent or/and cooperative processes, design
multiprocess architecture applications

H. Chen (CUNY) CISC 7310X October 16, 2024 4/17



-
Example Applications

» The Chromium projects
» The instructor's Monte Carlo simulation program to estimate w
» Shell scripts

What benefits do we get by using the multiprocess architecture?

H. Chen (CUNY) CISC 7310X October 16, 2024 5/17



e
Outline

@ IPC

@ Shared Memory
@ Message Passing

H. Chen (CUNY) CISC 7310X October 16, 2024 6/17



Inter-process Communication (IPC)

» Cooperative processes communicate with each other to share data.
» There are two communication models

» Shared memory
» Message passing

H. Chen (CUNY) CISC 7310X October 16, 2024 6/17



I
Shared Memory

| 4
| 4

OS must provide a system call to create a shared memory region.

OS must attach the shared memory region to communicating
processes’ address spaces.

OS must remove the restriction that normally one process is
prevented from accessing another process’'s memory.

All accesses to the shared memory region are treated as routine
memory accesses, and no assistance from the kernel is required.

The processes are also responsible for ensuring that they are not
writing to the same location simultaneously.

H. Chen (CUNY) CISC 7310X October 16, 2024

7/17



Message Passing

P Processes exchange messages. There is no conflict needed to be
avoided.
» |PC facility provides two operations:

> send(message)
P> receive(message)

P> Processes establish a communication link between them and exchange
messages via send/receive

H. Chen (CUNY) CISC 7310X October 16, 2024 8/17



Design Message Passing

» Physical communication link can be shared memory, hardware bus, or
network.
> Logically, the communication be

> direction or indirect communication (like mailbox)
> Blocking or non-blocking (synchronous or asynchronous)
> explicit buffering or implicit (automatic) buffering

H. Chen (CUNY) CISC 7310X October 16, 2024 9/17



~ Producer and Consumer Problem |
Outline

© Producer and Consumer Problem

H. Chen (C ) CISC 7310X October 16, 2024 10/17



Producer and Consumer Problem

The producer produces information while the consumer consumes
information

H. Chen (CUNY) CISC 7310X October 16, 2024 10/17



-
Bounded Buffer via Shared Memory

Shared Buffer

1 #define BUFFER_SIZE 10
2 typedef struct { } item;
3
4 // The following are shared among cooperating processes
5 item buffer [BUFFER_SIZE];
6 int in = 0;
7 int out = 0;
8

Producer Consumer
1 while (true) {/* produce an item in next 1 while (true) {

produced */ 2 while (counter = 0)
2 while (counter = BUFFER_SIZE) 3 ; /* do nothing x/
3 ; /% do nothing x/ 4 next_consumed = buffer[out];
4 buffer[in] = next_produced; 5 out = (out + 1) % BUFFER_SIZE;
5 in = (in + 1) % BUFFER_SIZE; 6 counter ——;
6 counter++; 7 /* consume the item in next consumed
7} */
8 8 }
9

CISC 7310X October 16, 2024 11/17



Process Synchronization

Both producer and consumer may read and write to the shared memory
concurrently ...

H. Chen (CUNY) CISC 7310X October 16, 2024 12/17



Producer and Consumer via Blocking Message Passing

Producer Consumer
1 message next_produced; 1 message next_consumed;
2 while (true) { 2 while (true) {
3 /* produce an item in next_produced x/ 3 receive (next_consumed); /* blocking */
4 send (next_produced); /* blocking x/
5 } 4 /* consume the item in next_consumed
6 */
7 5 }

6

CISC 7310X October 16, 2024 13/17



How aboub non-blocking message passing?

H. Chen (CUNY) CISC 7310X October 16, 2024 14 /17



. UNIX(POSIX) and Windows IPC |
Outline

@ UNIX (POSIX) and Windows IPC

H. Chen (CUNY) CISC 7310X October 16, 2024 15 /17



. UNIX(POSIX) and Windows IPC
UNIX IPC

Examine the example programs
» POSIX ordinary and named pipes
» POSIX shared memory
> POSIX message passing
> Berkeley Sockets

H. Chen (CUNY) CISC 7310X October 16, 2024 15 /17



_ UNIX(POSIX) and Windows IPC |
Windows IPC

Examine the example programs
» Windows anonymous and named pipes
» Windows mail slots

» Windows shared memory

H. Chen (CUNY) CISC 7310X October 16, 2024 16 /17



- Sharing Data among Threads and Processes |
Outline

© Sharing Data among Threads and Processes

H. Chen (CUNY) CISC 7310X October 16, 2024 17 /17



Which data sharing or IPC mechanism to use?
» Processes, or threads, or both?

» How do processes share data?
» How do threads share data?

H. Chen (CUNY) CISC 7310X October 16, 2024 17 /17



	Motivation
	IPC
	Shared Memory
	Message Passing

	Producer and Consumer Problem
	UNIX (POSIX) and Windows IPC
	Sharing Data among Threads and Processes

