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Synchronization Issues

Synchronization Issues

▶ Liveness
▶ Deadlock
▶ Starvation
▶ Priority inversion
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Synchronization Issues

Liveness

▶ Liveness refers to a set of properties that a system must satisfy to
ensure processes make progress.
▶ Processes may have to wait indefinitely while trying to acquire a

synchronization tool such as a mutex lock or semaphore.
▶ Waiting indefinitely violates the progress and bounded-waiting criteria

discussed at the beginning of this chapter.
▶ Indefinite waiting is an example of a liveness failure.
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Synchronization Issues

Deadlock

▶ Two or more processes are waiting indefinitely for an event that can
be caused by only one of the waiting processes

▶ Consider the following example,
Let S and Q be two semaphores initialized to 1

P0

1 wait(S);
2 wait(Q);
3 ...
4 signal (S);
5 signal (Q);

P1

1 wait(Q);
2 wait(S);
3 ...
4 signal (Q);
5 signal (S);

▶ Consider if P0 executes wait(S) and P1 wait(Q). When P0 executes
wait(Q), it must wait until P1 executes signal(Q)

▶ However, P1 is waiting until P0 execute signal(S).
▶ Since these signal() operations will never be executed, P0 and P1 are

deadlocked.
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Synchronization Issues

Starvation

▶ Indefinite blocking. A process may never be removed from the
semaphore queue in which it is suspended.
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Synchronization Issues

Priority Inversion

▶ Scheduling problem when lower-priority process holds a lock needed
by higher-priority process
▶ Consider the scenario with three processes P1, P2,and P3.
▶ P1 has the highest priority, P2 the next highest, and P3 the lowest.
▶ Assume a resouce P3 is assigned a resource R that P1 wants. Thus, P1

must wait for P3 to finish using the resource.
▶ However, P2 becomes runnable and preempts P3.
▶ What has happened is that P2, a process with a lower priority than P1

has indirectly prevented P3 from gaining access to the resource.
▶ Solved via priority-inheritance protocol.
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Synchronization Issues

Priority Inheritance Protocol

▶ The protocol simply allows the priority of the highest thread waiting
to access a shared resource to be assigned to the thread currently
using the resource.

▶ Thus, the current owner of the resource is assigned the priority of the
highest priority thread wishing to acquire the resource.
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Deadlock and Solutions Necessary Conditions

Necessary Conditions for Deadlocks

Four conditions hold simultaneously (the 4 necessary conditions for
deadlocks):
▶ Mutual exclusion. Only one process at a time can use a resource
▶ Hold and wait. A process holding at least one resource is waiting to

acquire additional resources held by other processes
▶ No preemption. A resource can be released only voluntarily by the

process holding it, after that process has completed its task
▶ Circular wait. There exists a set {P0, P1, . . . , Pn} of waiting processes

such that P0 is waiting for a resource that is held by P1, P1 is waiting
for a resource that is held by P2, . . ., Pn−1 is waiting for a resource
that is held by Pn, and Pn is waiting for a resource that is held by P0.
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Deadlock and Solutions Necessary Conditions

Handling Deadlocks

▶ Ensure that the system will never enter a deadlock state.
▶ Deadlock prevention (by structurally negating one of the four required

conditions)
▶ Deadlock avoidance (by carefully allocating resources)

▶ Allow the system to enter a deadlock state and then recover
▶ Deadlock detection and recovery (Let deadlocks occur, detect them,

and then take action)
▶ Ignore the problem and pretend that deadlocks never occur in the

system.
▶ The Ostrich algorithm
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The Ostrich AlgorithmThe Ostrich Algorithm

4/4/2019 CUNY | Brooklyn College 39

Deadlocks in my system 
happen once in a blue moon and 

…

Figure: The Ostrich Algorithm
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Deadlock Prevention

Deadlock Prevention

By invalidating one of the four required conditions
▶ Mutual Exclusion
▶ Hold and wait
▶ No preemption
▶ Circular wait

But is it possible, and if possible how and at what cost?
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Deadlock Prevention

Invalidating Mutual Exclusion?

We introduce terms, “shareable resources” and “non-shareable resources”
▶ Shareable resources. Resources that allow simultaneous access, e.g., a

read-only file. There isn’t a mutual exclusion requirement to
shareable resources.

▶ Non-shareable resources. Resources that do not allow simultaneous
access, e.g., a printer or a mutex lock.

Cannot prevent deadlocks by denying the mutual-exclusion condition?
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Deadlock Prevention

Invalidating Hold-and-Wait?

That is to say, we must guarantee that whenever a process requests a
resource, it does not hold any other resources. How do we achieve this?

1. Require a process to request and be allocated all its resources before
it begins execution, or

2. allow a process to request resources only when the process has none
allocated to it (e.g., by releasing it)

At what cost?
▶ Low resource utilization;
▶ starvation possible;
▶ also impractical

H. Chen (CUNY) CISC 7310X November 13, 2024 14 / 41



Deadlock Prevention

Invalidating No-Preemption?

To invalidate no-preemption, we consider that the OS may do the
following,

1. Check whether requested resources by process Pi are allocated to
process Pj that is waiting for additional resources.

2. If so, we preempt the desired resources from Pj and allocate the
resources to Pi.

Is it possible?
▶ Possible for resources whose state can be easily saved and restored

later, such as, a database transaction
▶ However, not generally possible, e.g., mutex locks and semaphores.
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Deadlock Prevention

Invalidating Circular Wait?

Consider the following approach.
1. Impose a total ordering of all resource types by assigning each

resource (i.e., mutex locks) a unique number.
2. Resources must be acquired in order based on the numbers

Does it invalidating circular wait? (Circular wait cease to happen)
▶ Yes, we can prove it by contradiction.

However,
▶ Resource ordering does not in itself prevent deadlock. Application

developers must write programs that follow the ordering.
▶ However, establishing an ordering of all resources can be sometimes

difficult.
▶ Considering on a system with hundreds or even thousands of locks 1

▶ What if locks can be acquired dynamically?
1To address this challenge, many Java developers have adopted the strategy of using the

method System.identityHashCode() as the function for ordering lock acquisition
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Resource Allocation Graph

Resource Allocation Graph

Use it to determine whether there is a circular wait condition.
▶ A set of vertices V and a set of edges E.
▶ V is partitioned into two types:

▶ P = {P1, P2, . . . , Pn}, the set consisting of all the processes in the
system (drawn in ovals)

▶ R = {R1, R2, . . . , Rm}, the set consisting of all resource types in the
system (drawn in rectangles)

▶ E is partitioned into two types:
▶ Request edge. Directed edge Pi → Rj , which reads “Pi requests or

waits for Rj”
▶ Assignment edge. Directed edge Rj → Pi, which reads “Rj is assigned

to or is held by Pi”
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Resource Allocation Graph

Resource Allocation Algorithms: Example 1

Circle: process; Square: resource; arrow: (Resource → Process, Process →
Resource, i.e., is being held/assigned to or requests)

Figure: Resource allocation graphs. (a) Holding a resource. (b) Requesting a
resource. (c) Deadlock. [Figure 6-3 in Tanenbaum & Bos, 2014]
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Resource Allocation Graph

Resource Allocation Algorithms: Example 2 (a)

Consider three processes (A, B, and C) and three resources (R, S, T)

A B C
Request R Request S Request T
Request S Request T Request R
Release R Release S Release T
Release S Release T Release R

How should we schedule these three processes?
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Resource Allocation Graph

Resource Allocation Algorithms: Example 2 (b)

Consider three processes (A, B, and C) and three resources (R, S, T)

A B C
Request R Request S Request T
Request S Request T Request R
Release R Release S Release T
Release S Release T Release R

How about this scheduling sequence (will there be a deadlock?)

1. A requests R
2. B requests S
3. C requests T
4. A requests S
5. B requests T
6. C requests R
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Resource Allocation Graph

Resource Allocation Algorithms: Example 2 (b)

How about this scheduling sequence (will there be a deadlock?)
1. A requests R 4. A requests S
2. B requests S 5. B requests T
3. C requests T 6. C requests R
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Resource Allocation Graph

Resource Allocation Algorithms: Example 2 (c)

Consider three processes (A, B, and C) and three resources (R, S, T)

A B C
Request R Request S Request T
Request S Request T Request R
Release R Release S Release T
Release S Release T Release R

How about this scheduling sequence (will there be a deadlock?)

1. A requests R
2. C requests T
3. A requests S
4. C requests R
5. A releases R
6. A releases S
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Resource Allocation Graph

Resource Allocation Algorithms: Example 2 (c)

How about this scheduling sequence (will there be a deadlock?)

1. A requests R 4. C requests R
2. C requests T 5. A releases R
3. A requests S 6. A releases S
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Banker’s Algorithm

Banker’s Algorithm

Use it to determine whether there is a circular wait condition when a
resource has multiple instances.
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Banker’s Algorithm

Data Structures

Let n = number of processes, and m = number of resources types.
▶ Available (or Free): Vector of length m. If available[j] = k, there

are k instances of resource type Rj available
▶ Max: n × m matrix. If Max[i,j] = k, then process Pi may request

at most k instances of resource type Rj

▶ Allocation (or Has): n × m matrix. If Allocation[i,j] = k then
Pi is currently allocated k instances of Rj

▶ Need: n × m matrix. If Need[i,j] = k, then Pi may need k more
instances of Rj to complete its task
Need [i,j] = Max[i,j] – Allocation [i,j]
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Banker’s Algorithm

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively. Do
the following initialization,
Work = Available
For i = 0, 1, ..., n-1:

Finish[i] = false
2. Find an index i such that both

2.1 Finish[i] == false
2.2 Need[i] ≤ Work
If no such i exists, go to step 4.

3. Work = Work + Allocation[i]
Finish[i] = true
Go to step 2.

4. If Finish[i] == true for all i, then the system is in a safe state;
otherwise, unsafe state.

This algorithm may require an order O(m × n2) operations to determine
whether a state is safe.
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Banker’s Algorithm

Examples of Running Safety Algorithm

Let’s examine a few examples ...
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Banker’s Algorithm

Banker’s Algorithm: Example for Determining Safe State
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Deadlock Avoidance

Deadlock Avoidance

Use Resource Allocation Graph or a variant of Banker’s algorithm to
determine if current resource allocation is in a safe state.
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Deadlock Detection and Recovery
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Deadlock Detection and Recovery

Deadlock Detection and Recovery

1. Use Resource Allocation Graph (Wait-for Graph) or a variant of
Banker’s algorithm to determine if there is a deadlock.

2. Recovery from the deadlock (multiple approaches)
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Deadlock Detection and Recovery

Wait-for Graph for Deadlock Detection: Example

Figure: (a) Resource-allocation graph. (b) Corresponding wait-for graph.
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Deadlock Detection and Recovery

Deadlock Detection in BCC Toolkit

See the example at:

https://github.com/iovisor/bcc/blob/master/tools/deadlock_example.txt
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Deadlock Detection and Recovery

Matrix-based Deadlock Detection Algorithm

Using a variant of Banker’s algorithm to detect whether there is a
deadlock.
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Deadlock Detection and Recovery

Data Structures

Let n = number of processes, and m = number of resources types.
▶ Available. A vector of length m indicates the number of available

resources of each type.
▶ Allocation. An n × m matrix defines the number of resources of each

type currently allocated to each thread.
▶ Request. An n × m matrix indicates the current request of each

thread. If Request[i][j] equals k, then process Pi is requesting k
more instances of resource type Rj . (Compare this with Need in the
satety algorithm)
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Deadlock Detection and Recovery

Deadlock Detection Algorithm

1. Let Work and Finish be vectors of length m and n, respectively. Do
the following initialization,
Work = Available
For i = 0, 1, ..., n-1:

if Allocation[i] ̸= 0, then Finish[i] = false
else Finish[i] = true

2. Find an index i such that both
2.1 Finish[i] == false
2.2 Request[i] ≤ Work
If no such i exists, go to step 4.

3. Work = Work + Allocation[i]
Finish[i] = true
Go to step 2.

4. If Finish[i] == false for some i, 0 ≤ i < n, then the system is in
a deadlocked state. Moreover, if Finish[i] == false, then process
Pi is deadlocked.

This algorithm requires an order of m × n2 operations to detect whether
the system is in a deadlocked state.
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Deadlock Detection and Recovery

Examples of Deadlock Detection Algorithm

Let’s examine a few examples ...

H. Chen (CUNY) CISC 7310X November 13, 2024 36 / 41



Deadlock Detection and Recovery

Banker’s Algorithm: Example for Deadlock Detection
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Deadlock Detection and Recovery

Banker’s Algorithm: Example for Deadlock Detection

What if the requests are modified as follows:
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Events vs. Threads

Events vs. Threads

There have been a recurrent discussion on how we should realize
concurrency [2, 3, 4, 6, 5]
▶ Threads vs. events [2, 4, 6, 5]
▶ Theory vs. practice ([1, Section 9.1], [3])
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Events vs. Threads
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Events vs. Threads
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