
Process Management

Hui Chen a

aCUNY Brooklyn College

March 3, 2022

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 1 / 31



Outline

1 Concept of Process and Motivation

2 Motivation for Process
Need for Reliability and Protection
Concepts of Multiprogramming and Time-Sharing

3 Policy and Mechanism

4 Memory, Process, and Protection

5 Running Processes

6 Process States Transition and Process Queues

7 OS Design Objectives and CPU Scheduler

8 Process Operations and Example Programs

9 Querying Process Status on Linux Systems

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 2 / 31



Concept of Process and Motivation

Outline

1 Concept of Process and Motivation

2 Motivation for Process
Need for Reliability and Protection
Concepts of Multiprogramming and Time-Sharing

3 Policy and Mechanism

4 Memory, Process, and Protection

5 Running Processes

6 Process States Transition and Process Queues

7 OS Design Objectives and CPU Scheduler

8 Process Operations and Example Programs

9 Querying Process Status on Linux Systems

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 3 / 31



Concept of Process and Motivation

Overview of OS Services
56 Chapter 2 Operating-System Structures

user and other system programs

services

operating system

hardware

system calls

GUI touch screen

user interfaces

command line

program
execution

I/O
operations

file
systems communication resource

allocation accounting

protection
and

security

error
detection

Figure 2.1 A view of operating system services.

system to another, but we can identify common classes. Figure 2.1 shows one
view of the various operating-system services and how they interrelate. Note
that these services alsomake the programming task easier for the programmer.

One set of operating system services provides functions that are helpful to
the user.

• User interface. Almost all operating systems have a user interface (UI).
This interface can take several forms. Most commonly, a graphical user
interface (GUI) is used. Here, the interface is a window system with a
mouse that serves as a pointing device to direct I/O, choose from menus,
and make selections and a keyboard to enter text. Mobile systems such
as phones and tablets provide a touch-screen interface, enabling users to
slide their fingers across the screen or press buttons on the screen to select
choices. Another option is a command-line interface (CLI), which uses text
commands and a method for entering them (say, a keyboard for typing
in commands in a specific format with specific options). Some systems
provide two or all three of these variations.

• Program execution. The systemmust be able to load a program into mem-
ory and to run that program. The program must be able to end its execu-
tion, either normally or abnormally (indicating error).

• I/O operations. A running program may require I/O, which may involve a
file or an I/O device. For specific devices, special functions may be desired
(such as reading from a network interface or writing to a file system). For
efficiency and protection, users usually cannot control I/O devices directly.
Therefore, the operating system must provide a means to do I/O.

• File-system manipulation. The file system is of particular interest. Obvi-
ously, programsneed to read andwrite files anddirectories. They also need
to create and delete them by name, search for a given file, and list file infor-
mation. Finally, some operating systems include permissionsmanagement
to allowor deny access to files or directories based on file ownership.Many
operating systems provide a variety of file systems, sometimes to allow

Figure: A view of operating system services1.

1Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operating system concepts. 10th
edition. John Wiley & Sons, 2018.

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 3 / 31



Concept of Process and Motivation

Evolved to Process

I Early computers run a single
program at a time.

I Contemporary computer systems
allow multiple programs to be
loaded into memory and
executed concurrently.

I This evolution results in the
notation of a process, i.e., a
program in execution.

Figure: From US Army Photo Archive

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 4 / 31

https://ftp.arl.army.mil/ftp/historic-computers/


Concept of Process and Motivation

Process Management

I Why?
I What?
I How?

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 5 / 31



Motivation for Process

Outline

1 Concept of Process and Motivation

2 Motivation for Process
Need for Reliability and Protection
Concepts of Multiprogramming and Time-Sharing

3 Policy and Mechanism

4 Memory, Process, and Protection

5 Running Processes

6 Process States Transition and Process Queues

7 OS Design Objectives and CPU Scheduler

8 Process Operations and Example Programs

9 Querying Process Status on Linux Systems

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 6 / 31



Motivation for Process Need for Reliability and Protection

Need for Realiability and Protection

I Programs can fail.
I Programs may access other

programs’ code and data,
intentionally or unintetionally.

I ...

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 6 / 31



Motivation for Process Concepts of Multiprogramming and Time-Sharing

Multiprogramming

I A technique in OS that OS organizes a collection of processes in such
a way that the processes run concurrently (in parallel or in
pseudo-parallel) and the CPU always has a process to execute.

I Multiprogramming can increase CPU utilization.

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 7 / 31



Motivation for Process Concepts of Multiprogramming and Time-Sharing

Time-Sharing

I A technique in OS that OS used a timer and cycle processes rapidly
through the CPU , giving each user a share of the resources.

I Time-sharing can decrease response time to make system more
responsive.

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 8 / 31



Motivation for Process Concepts of Multiprogramming and Time-Sharing

A Simple Model of Multiprogramming

CPU Utilization = 1 − pn (1)

where
I n. There are n processes in memory, and we call it the degree of

multiprogramming.
I p. The fraction of time that a process spends in waiting for I/O to

complete.

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 9 / 31



Policy and Mechanism

Outline

1 Concept of Process and Motivation

2 Motivation for Process
Need for Reliability and Protection
Concepts of Multiprogramming and Time-Sharing

3 Policy and Mechanism

4 Memory, Process, and Protection

5 Running Processes

6 Process States Transition and Process Queues

7 OS Design Objectives and CPU Scheduler

8 Process Operations and Example Programs

9 Querying Process Status on Linux Systems

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 10 / 31



Policy and Mechanism

Policy

I Policy (What do we want?). The OS should provide protected access
to shared resources.
I No program can read or write memory of another program or of the OS.
I Programs can run concurrently to utilize resources.
I Additionally, do we wish to have better utilization of system resources,

do we wish to have better (small) response time?

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 10 / 31



Policy and Mechanism

Mechanism

I Policy (What?). The OS should provide protected access to shared
resources.

I Mechanism (How?). Hardware, OS kernel, and process.
I Dual mode operating. Processes run in user or kernel mode. Restrict

process in user mode from accessing privileged instructions.
I Address translation. Each process has its isolated logical (or virtual

address space), and hardware translates virtual address to physical
address.

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 11 / 31



Memory, Process, and Protection

Outline

1 Concept of Process and Motivation

2 Motivation for Process
Need for Reliability and Protection
Concepts of Multiprogramming and Time-Sharing

3 Policy and Mechanism

4 Memory, Process, and Protection

5 Running Processes

6 Process States Transition and Process Queues

7 OS Design Objectives and CPU Scheduler

8 Process Operations and Example Programs

9 Querying Process Status on Linux Systems

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 12 / 31



Memory, Process, and Protection

Process in Memory

OS creates an illusion that a process runs as if the process ran on its own
CPU and had its own memory, i.e., a process gets its own
I “virtual CPU”, and
I “virtual memory address space”

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 12 / 31



Memory, Process, and Protection

Layout of Process in Memory

The layout of a process in memory consists of multiple parts, generally,
I Text. The text section is the program code.
I Stack. The stack section contains temporary data, such as, function

parameters, return addresses, local variables.
I Data. The data section containing global variables
I Heap. The heap section containing memory dynamically allocated

during run time.

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 13 / 31



Memory, Process, and Protection

Memory Layout of a C Program

Let’s take a look at a C program ...

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 14 / 31



Memory, Process, and Protection

Multiple Processes in Memory

Consider that there are now multiple processes in memory.
I But there is only one single physical memory address space in the

machine, how do we create the illusion that each has its own memory
address space?

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 15 / 31



Memory, Process, and Protection

Address Translation

A process operates in an memory address space distinct from the physical
memory space of the machine
I Address translation. Hardware translates a memory address the

process operates on to a memory address in the physical memory.

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 16 / 31



Memory, Process, and Protection

Recall Discussion: Kernel and Process

I Policy. The OS should provide protected access to shared resources
efficiently.
I No program can read or write memory of another program or of the OS.
I Programs can run concurrently to utilize resources efficiently.

I Mechanism. Hardware, OS kernel, and process.
I Dual mode operating. Processes run in user or kernel mode. Restrict

process in user mode from accessing privileged instructions.
I Address translation. Each process has its isolated logical (or virtual

address space), and hardware translates virtual address to physical
address.

I Experiment with an example buggy program to illustrate memory
protection.

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 17 / 31



Running Processes

Outline

1 Concept of Process and Motivation

2 Motivation for Process
Need for Reliability and Protection
Concepts of Multiprogramming and Time-Sharing

3 Policy and Mechanism

4 Memory, Process, and Protection

5 Running Processes

6 Process States Transition and Process Queues

7 OS Design Objectives and CPU Scheduler

8 Process Operations and Example Programs

9 Querying Process Status on Linux Systems

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 18 / 31



Running Processes

Running Multiple Processes?

Consider that two processes run concurrently (in pseudo-parallel) in a
single CPU core system ...
I These two processes switch on and off the CPU for many rounds ...

how do we create the illusion that each has its own CPU?

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 18 / 31



Running Processes

Two processes are running ...

Consider
I At T1, Process P1 is active (on the physical CPU), and Process P2 is

inactive.
I At T2, Process P2 is active (on the physical CPU), and Process P1 is

inactive.

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 19 / 31



Running Processes

Two processes are running ...

How?
1. OS maintains a data structure in memory (its own address space),

when the OS runs, it switches P1 off the CPU and P2 on the CPU,
i.e., it

2. saves registers Program Counter (PC) and Stack Pointer (SP) in the
data structure for P1 in memory

3. loads PC and SP from the data structure for P2 in memory

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 19 / 31



Running Processes

Process Control Block

A process control block (also called task control block or thread control
block) is a data structure for information associated with each process
including the process’s execution context.
I Process state, i.e., running, waiting, etc
I Program counter, i.e., location of instruction to next execute
I Stack pointer, i.e., top of the process stack
I other CPU registers if necessary, i.e., contents of all process-centric

registers
I CPU scheduling information, i.e., priorities, scheduling queue pointers
I Memory-management information, i.e., memory allocated to the

process
I Accounting information, i.e., CPU used, clock time elapsed since

start, time limits
I I/O status information, i.e., I/O devices allocated to process, list of

open files
H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 20 / 31



Process States Transition and Process Queues

Outline

1 Concept of Process and Motivation

2 Motivation for Process
Need for Reliability and Protection
Concepts of Multiprogramming and Time-Sharing

3 Policy and Mechanism

4 Memory, Process, and Protection

5 Running Processes

6 Process States Transition and Process Queues

7 OS Design Objectives and CPU Scheduler

8 Process Operations and Example Programs

9 Querying Process Status on Linux Systems

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 21 / 31



Process States Transition and Process Queues

Process Queues and Transition
3.2 Process Scheduling 113

ready queue CPU

I/O I/O wait queue I/O request

time slice
expired

create child
process

child 
termination
wait queue

wait for an
interrupt

interrupt 
wait queue

interrupt
occurs

child
terminates

Figure 3.5 Queueing-diagram representation of process scheduling.

• The process could issue an I/O request and then be placed in an I/O wait
queue.

• The process could create a new child process and then be placed in a wait
queue while it awaits the child’s termination.

• The process could be removed forcibly from the core, as a result of an
interrupt or having its time slice expire, and be put back in the readyqueue.

In the first two cases, the process eventually switches from thewaiting state
to the ready state and is then put back in the ready queue. Aprocess continues
this cycle until it terminates, at which time it is removed from all queues and
has its PCB and resources deallocated.

3.2.2 CPU Scheduling

Aprocess migrates among the ready queue and various wait queues through-
out its lifetime. The role of the CPU scheduler is to select from among the
processes that are in the ready queue and allocate a CPU core to one of them. The
CPU scheduler must select a new process for the CPU frequently. An I/O-bound
process may execute for only a few milliseconds before waiting for an I/O
request.Although a CPU-bound processwill require a CPU core for longer dura-
tions, the scheduler is unlikely to grant the core to a process for an extended
period. Instead, it is likely designed to forcibly remove the CPU from a process
and schedule another process to run. Therefore, the CPU scheduler executes at
least once every 100 milliseconds, although typically much more frequently.

Some operating systems have an intermediate form of scheduling, known
as swapping, whose key idea is that sometimes it can be advantageous to
remove a process from memory (and from active contention for the CPU)
and thus reduce the degree of multiprogramming. Later, the process can be
reintroduced into memory, and its execution can be continued where it left off.
This scheme is known as swapping because a process can be “swapped out”

Figure: Process queues and transitions2.

2Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operating system concepts. 10th
edition. John Wiley & Sons, 2018.

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 21 / 31



Process States Transition and Process Queues

Data Structures for Process Queues
112 Chapter 3 Processes

queue header PCB 7

PCB3 PCB14 PCB6

PCB 2

head

head

ready
queue

wait
queue

tail registers registers

tail

•
•
•

•
•
•

Figure 3.4 The ready queue and wait queues.

to wait until a core is free and can be rescheduled. The number of processes
currently in memory is known as the degree of multiprogramming.

Balancing the objectives of multiprogramming and time sharing also
requires taking the general behavior of a process into account. In general, most
processes can be described as either I/O bound or CPU bound. An I/O-bound
process is one that spends more of its time doing I/O than it spends doing
computations. A CPU-bound process, in contrast, generates I/O requests
infrequently, using more of its time doing computations.

3.2.1 Scheduling Queues

As processes enter the system, they are put into a ready queue, where they are
ready and waiting to execute on a CPU’s core This queue is generally stored as
a linked list; a ready-queue header contains pointers to the first PCB in the list,
and each PCB includes a pointer field that points to the next PCB in the ready
queue.

The system also includes other queues. When a process is allocated a CPU
core, it executes for a while and eventually terminates, is interrupted, or waits
for the occurrence of a particular event, such as the completion of an I/O
request. Suppose the process makes an I/O request to a device such as a disk.
Since devices run significantly slower than processors, the process will have
to wait for the I/O to become available. Processes that are waiting for a certain
event to occur — such as completion of I/O — are placed in a wait queue
(Figure 3.4).

A common representation of process scheduling is a queueing diagram,
such as that in Figure 3.5. Two types of queues are present: the ready queue and
a set of wait queues. The circles represent the resources that serve the queues,
and the arrows indicate the flow of processes in the system.

A new process is initially put in the ready queue. It waits there until it is
selected for execution, or dispatched. Once the process is allocated a CPU core
and is executing, one of several events could occur:

Figure: The ready and wait queues3.

3Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operating system concepts. 10th
edition. John Wiley & Sons, 2018.

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 22 / 31



Process States Transition and Process Queues

Process States and Transition
3.1 Process Concept 109

new terminated

runningready

admitted interrupt

scheduler dispatch
I/O or event completion I/O or event wait

exit

waiting

Figure 3.2 Diagram of process state.

• Terminated. The process has finished execution.

These names are arbitrary, and they vary across operating systems. The states
that they represent are found on all systems, however. Certain operating sys-
tems also more finely delineate process states. It is important to realize that
only one process can be running on any processor core at any instant. Many
processesmay be ready andwaiting, however. The state diagram corresponding
to these states is presented in Figure 3.2.

3.1.3 Process Control Block

Each process is represented in the operating system by a process control
block (PCB)—also called a task control block. A PCB is shown in Figure 3.3.
It contains many pieces of information associated with a specific process,
including these:

• Process state. The state may be new, ready, running, waiting, halted, and
so on.

• Program counter. The counter indicates the address of the next instruction
to be executed for this process.

process state

process number

program counter

memory limits

list of open files

registers

• • •

Figure 3.3 Process control block (PCB).

Figure: Process transitions in an OS4.

4Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operating system concepts. 10th
edition. John Wiley & Sons, 2018.

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 23 / 31



OS Design Objectives and CPU Scheduler

Outline

1 Concept of Process and Motivation

2 Motivation for Process
Need for Reliability and Protection
Concepts of Multiprogramming and Time-Sharing

3 Policy and Mechanism

4 Memory, Process, and Protection

5 Running Processes

6 Process States Transition and Process Queues

7 OS Design Objectives and CPU Scheduler

8 Process Operations and Example Programs

9 Querying Process Status on Linux Systems

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 24 / 31



OS Design Objectives and CPU Scheduler

Multiprogramming and Time-Sharing

I The objective of multiprogramming is to have some process running
at all times so as to maximize CPU utilization.

I The objective of time sharing is to switch a CPU core among
processes so frequently that users can interact with each program
while it is running.

Questions. How do we support these objectives?

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 24 / 31



OS Design Objectives and CPU Scheduler

CPU Scheduler

I The CPU scheduler is to select from among the processes that are in
the ready queue and allocate a CPU core to one of them.

I Different CPU scheduling algorithms help OSes meet different
objectives. 3.2 Process Scheduling 113

ready queue CPU

I/O I/O wait queue I/O request

time slice
expired

create child
process

child 
termination
wait queue

wait for an
interrupt

interrupt 
wait queue

interrupt
occurs

child
terminates

Figure 3.5 Queueing-diagram representation of process scheduling.

• The process could issue an I/O request and then be placed in an I/O wait
queue.

• The process could create a new child process and then be placed in a wait
queue while it awaits the child’s termination.

• The process could be removed forcibly from the core, as a result of an
interrupt or having its time slice expire, and be put back in the readyqueue.

In the first two cases, the process eventually switches from thewaiting state
to the ready state and is then put back in the ready queue. Aprocess continues
this cycle until it terminates, at which time it is removed from all queues and
has its PCB and resources deallocated.

3.2.2 CPU Scheduling

Aprocess migrates among the ready queue and various wait queues through-
out its lifetime. The role of the CPU scheduler is to select from among the
processes that are in the ready queue and allocate a CPU core to one of them. The
CPU scheduler must select a new process for the CPU frequently. An I/O-bound
process may execute for only a few milliseconds before waiting for an I/O
request.Although a CPU-bound processwill require a CPU core for longer dura-
tions, the scheduler is unlikely to grant the core to a process for an extended
period. Instead, it is likely designed to forcibly remove the CPU from a process
and schedule another process to run. Therefore, the CPU scheduler executes at
least once every 100 milliseconds, although typically much more frequently.

Some operating systems have an intermediate form of scheduling, known
as swapping, whose key idea is that sometimes it can be advantageous to
remove a process from memory (and from active contention for the CPU)
and thus reduce the degree of multiprogramming. Later, the process can be
reintroduced into memory, and its execution can be continued where it left off.
This scheme is known as swapping because a process can be “swapped out”

Figure: Process queues and transitions5.
5Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operating system concepts. 10th

edition. John Wiley & Sons, 2018.H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 25 / 31



Process Operations and Example Programs

Outline

1 Concept of Process and Motivation

2 Motivation for Process
Need for Reliability and Protection
Concepts of Multiprogramming and Time-Sharing

3 Policy and Mechanism

4 Memory, Process, and Protection

5 Running Processes

6 Process States Transition and Process Queues

7 OS Design Objectives and CPU Scheduler

8 Process Operations and Example Programs

9 Querying Process Status on Linux Systems

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 26 / 31



Process Operations and Example Programs

Process Operations

I An OS must provide mechanisms for,
I process creation,
I process termination, and others

I Design considerations and related concepts.

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 26 / 31



Process Operations and Example Programs

System Calls for Process Operations in UNIX

I Process creation. fork(), exec(), wait() ...
I Process termination. exit(), wait(), abort() ...

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 27 / 31



Process Operations and Example Programs

Multiprocess Architecture

Client Server Process
(1) Request

(3) Create new process
to service the request

(2) Resume listening for
additional client requests

Figure: A multiprocess architecture server program

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 28 / 31



Process Operations and Example Programs

Design Multiprocess Architecture Programs

Design programs of multiprocess architecture on UNIX ...
I Observe the example programs and consider rationale behind the

design ...

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 29 / 31



Querying Process Status on Linux Systems

Outline

1 Concept of Process and Motivation

2 Motivation for Process
Need for Reliability and Protection
Concepts of Multiprogramming and Time-Sharing

3 Policy and Mechanism

4 Memory, Process, and Protection

5 Running Processes

6 Process States Transition and Process Queues

7 OS Design Objectives and CPU Scheduler

8 Process Operations and Example Programs

9 Querying Process Status on Linux Systems

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 30 / 31



Querying Process Status on Linux Systems

Examining Process States on Linux Systems

I Recall previous discussion ...
I ps, pstree, top, vmstat, iostat, lsof

, ...
I The /proc file system

man proc

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 30 / 31



Querying Process Status on Linux Systems

References I

Silberschatz, Abraham, Peter B. Galvin, and Greg Gagne. Operating
system concepts. 10th edition. John Wiley & Sons, 2018.

H. Chen (CUNY) CISC 7310X-R6 March 3, 2022 31 / 31


	Concept of Process and Motivation
	Motivation for Process
	Need for Reliability and Protection
	Concepts of Multiprogramming and Time-Sharing

	Policy and Mechanism
	Memory, Process, and Protection
	Running Processes
	Process States Transition and Process Queues
	OS Design Objectives and CPU Scheduler
	Process Operations and Example Programs
	Querying Process Status on Linux Systems
	References

