
Interrupts and I/O

Hui Chen a

aCUNY Brooklyn College

February 11, 2021

H. Chen (CUNY) CISC 7310X-R6 February 11, 2021 1 / 33

Outline

1 Overview of Computer Architecture

2 Overview of I/O devices

3 Input/Output
Addressing Deivce Memories
I/O Schemes

Polling
Interrupted I/O
DMA

4 I/O Software

5 Simple Character Device Driver in Linux

H. Chen (CUNY) CISC 7310X-R6 February 11, 2021 2 / 33

Overview of Computer Architecture

Architecture, OS, and Programming

I Architecture underpins design of OS and programming
I How we wrote our boot sector code?
I How we write a program in high-level programming languages like

C/C++, Java, and Python?

H. Chen (CUNY) CISC 7310X-R6 February 11, 2021 3 / 33

Overview of Computer Architecture

von Neumann Computers

Process and memory connected by a bus (Von Neumann, 1945)

H. Chen (CUNY) CISC 7310X-R6 February 11, 2021 4 / 33

Overview of Computer Architecture

Modern von Neumann Computers

Source: Figure 1.7 in Silberschatz et al., 20181

1Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operating system concepts. 10th
edition. John Wiley & Sons, 2018.

H. Chen (CUNY) CISC 7310X-R6 February 11, 2021 5 / 33

Overview of Computer Architecture

An x86 Realization

Source: Figure 1-12 in Tanenbaum and Bos, 20142

2Andrew S. Tanenbaum and Herbert Bos. Modern Operating Systems. 4th. USA: Prentice
Hall Press, 2014. isbn: 013359162X.

H. Chen (CUNY) CISC 7310X-R6 February 11, 2021 6 / 33

Overview of Computer Architecture

von Neumann Bottleneck

”I propose to call this tube the von Neumann bottleneck. The task
of a program is to change the contents of the store in some major
way; when one considers that this task must be accomplished
entirely by pumping single words back and forth through the von
Neumann bottleneck, the reason for its name becomes clear.”
– John Backus, 1977

H. Chen (CUNY) CISC 7310X-R6 February 11, 2021 7 / 33

Overview of I/O devices

Discussion: Examples of I/O Devices

I What are the examples of computer I/O devices?
I How do we categorize them? Why do we categorize them?
I How do we connect an I/O device to a computer?
I How does an I/O device communicate with a computer?

H. Chen (CUNY) CISC 7310X-R6 February 11, 2021 8 / 33

Overview of I/O devices

I/O Bus

I/O devices communicate with a computer via a connection point
I (Physical) port, e.g., USB port, serial port, parallel port
I I/O Bus (or Expansion Bus), e.g., PCI bus, SCSI bus

H. Chen (CUNY) CISC 7310X-R6 February 11, 2021 9 / 33

Overview of I/O devices

Typical PCB Bus

Source: Figure 12-1 in Silberschatz et al., 20183

3Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operating system concepts. 10th
edition. John Wiley & Sons, 2018.

H. Chen (CUNY) CISC 7310X-R6 February 11, 2021 10 / 33

Overview of I/O devices

Device and Device Controller

An I/O device typically packages two major components.
I (Mechanical) Device, e.g., hard disk drives have motors, magnetic

headers, and disks
I Controller, a collection of electronics that operate a port, a bus, or a

device (some contain small embedded computer), e.g., a SATA
controller, a USB controller

I CPU communicates with the device via the controller
I Accept and act on commands from the OS
I Present a simpler interface to the OS

H. Chen (CUNY) CISC 7310X-R6 February 11, 2021 11 / 33

Input/Output

Discussion: How to do I/O

Absent an OS or in an OS, how do we write a program to read or write to
an I/O device?

H. Chen (CUNY) CISC 7310X-R6 February 11, 2021 12 / 33

Input/Output

Device Controller Memories

I Typically have 4 registers or more
I Data-in register. Read by the CPU
I Data-out register. Written by the CPU.
I Status register. Ready by the CPU, a number of bits indicating the

status of the device (e.g., busy, error)
I Control register. Written by the CPU, a number of bits indicating the

mode of the device
I May have a data buffer, e.g., a video adapter (video memory)

Device I/O is essentially to read or write to these memories in the device
controller.
I How do we address the device (controller) memories?
I In what programming pattern do we write to or read from the

memories?

H. Chen (CUNY) CISC 7310X-R6 February 11, 2021 13 / 33

Input/Output Addressing Deivce Memories

Addressing Device (Controller) Memories

I Port-mapped I/O
I Memory-mapped I/O
I Hybrid of the two

H. Chen (CUNY) CISC 7310X-R6 February 11, 2021 14 / 33

Input/Output Addressing Deivce Memories

Addressing Device (Controller) Memories

(a) Port-mapped I/O; (b) Memory-mapped I/O; (c) Hybrid (Figure 5-2 in
Tanenbaum and Bos, 20144)

4Andrew S. Tanenbaum and Herbert Bos. Modern Operating Systems. 4th. USA: Prentice
Hall Press, 2014. isbn: 013359162X.

H. Chen (CUNY) CISC 7310X-R6 February 11, 2021 15 / 33

Input/Output Addressing Deivce Memories

Example I/O Port Allocation on PCs

Take a look at the VM

H. Chen (CUNY) CISC 7310X-R6 February 11, 2021 16 / 33

Input/Output Addressing Deivce Memories

Hybrid Scheme

I Memory-mapped I/O (addressing) for data buffer, i.e., data buffers
are mapped to memory address

I Port-mapped I/O (addressing) for control registers, i.e., control
registers have dedicated I/O ports

H. Chen (CUNY) CISC 7310X-R6 February 11, 2021 17 / 33

Input/Output Addressing Deivce Memories

Port-Mapped I/O vs. Memory-Mapped I/O Addressing

I Memory-mapped I/O (addressing) is easier to program, easier to
protect, faster to access (addressing it as if it were main memory and
do not require special instructions)

I Port-mapped I/O typically requires special instructions, like in, out
in x86 instruction set.

I However, memory-mapped (addressing) is more complex to design
cache, more complex to design bus as the two types ddresses logically
identical, but physically different

H. Chen (CUNY) CISC 7310X-R6 February 11, 2021 18 / 33

Input/Output I/O Schemes

I/O Schemes

In what programming pattern do we write to or read from the memories?
I Busy waiting (polling)

while (busy) wait; do I/O;
I Interrupted I/O

do something else; when (interrupted) do I/O;
I Direct memory access (DMA)

initialize DMA; do something else; I/O done when interrupted;

H. Chen (CUNY) CISC 7310X-R6 February 11, 2021 19 / 33

Input/Output I/O Schemes

Implementing Polling

I CPU and Device Controller work together
I CPU does

do
read the busy-bit in the device status register

while (busy)
set the write-bit in the control register
write a byte into the data-out register
set the command-ready bit in the control register

I Device controller does
do

read the command-ready bit
while (not set)
set the busy bit
read the byte in the data-out register
write the byte to the device
if (success) clear the command-ready bit and the busy bit
else set the error bit

H. Chen (CUNY) CISC 7310X-R6 February 11, 2021 20 / 33

Input/Output I/O Schemes

(CPU) Interrupt

I Interrupt transfers control asynchronously to the interrupt service
routine

I Two sources of interrupts
I External (hardware-generated) interrupts: interrupts are generally

caused by hardware
I Software generated interrupts: a trap or exception is a

software-generated interrupt caused either by an error or a user request
I Related concepts

I Interrupt vector (interrupt descriptor by Intel)
I Interrupt service routine: interrupt handler, a program processes the

interrupt
I Interrupt vector table: consists of interrupt vectors
I Interrupt vector: the address of an interrupt handler
I Interrupt architecture must save the address of the interrupted

instruction

H. Chen (CUNY) CISC 7310X-R6 February 11, 2021 21 / 33

Input/Output I/O Schemes

Implementing Interrupted I/O

H. Chen (CUNY) CISC 7310X-R6 February 11, 2021 22 / 33

Input/Output I/O Schemes

Polling vs. Interrupted I/O

What are the advantages and disadvantages?

H. Chen (CUNY) CISC 7310X-R6 February 11, 2021 23 / 33

Input/Output I/O Schemes

I/O Interrupt Timeline

Source: Figure 1.3 in Silberschatz et al., 20185

5Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operating system concepts. 10th
edition. John Wiley & Sons, 2018.

H. Chen (CUNY) CISC 7310X-R6 February 11, 2021 24 / 33

Input/Output I/O Schemes

Implementing DMA

Aided by a special purpose processor called direct-memory-access (DMA)
controller
I CPU writes a DMA command block into memory

I Pointer to the source of transfer
I Pointer to the destination of transfer
I A count of the number of bytes to be transferred

I CPU writes the address of this block to the DMA controller
I The DMA controller does I/O by directly access devices and system

bus
I CPU is interrupted when the DMA controller completes the transfer

or encounters an error

H. Chen (CUNY) CISC 7310X-R6 February 11, 2021 25 / 33

Input/Output I/O Schemes

Implementing DMA

Source: Figure 12.6 in Silberschatz et al., 20186

6Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operating system concepts. 10th
edition. John Wiley & Sons, 2018.

H. Chen (CUNY) CISC 7310X-R6 February 11, 2021 26 / 33

I/O Software

Overview of OS I/O Software

Source: Figure 12.7 in Silberschatz et al., 20187

7Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operating system concepts. 10th
edition. John Wiley & Sons, 2018.

H. Chen (CUNY) CISC 7310X-R6 February 11, 2021 27 / 33

I/O Software

Device Independency?

I To achieve device independent, categorize devices (device types)
based on general characteristics.

I A few factors:
I Size of transfer: Character-stream or block
I Access order: sequential or random access
I Predictability and responsiveness: Synchronous and asynchronous
I Shared or dedicated
I Speed of operation, e.g., latency, seek time, transfer rate
I Read-write, read only, or write only

H. Chen (CUNY) CISC 7310X-R6 February 11, 2021 28 / 33

I/O Software

Device Type Examples

Block device vs. character device

H. Chen (CUNY) CISC 7310X-R6 February 11, 2021 29 / 33

I/O Software

Block Devices

I Read and write a block a time
I Essential behavior: read(), write(), and seek() for random-access

block devices

H. Chen (CUNY) CISC 7310X-R6 February 11, 2021 30 / 33

I/O Software

Character Devices

I Read and write a character a time
I Essential behavior: get(), put()

H. Chen (CUNY) CISC 7310X-R6 February 11, 2021 31 / 33

I/O Software

Device Driver

Reduce complexity, increase uniformity and reliability
I OS provides an abstraction (service) for the essential behavior of the

device.
I Device driver implements the logic for the abstraction
I User programs communicate to OS, device driver, and then the device

controller

H. Chen (CUNY) CISC 7310X-R6 February 11, 2021 32 / 33

Simple Character Device Driver in Linux

Lab. Implementing Device Driver

Implement a simple character device driver as a kernel module on Linux.

H. Chen (CUNY) CISC 7310X-R6 February 11, 2021 33 / 33

	Overview of Computer Architecture
	Overview of I/O devices
	Input/Output
	Addressing Deivce Memories
	I/O Schemes

	I/O Software
	Simple Character Device Driver in Linux

