
Overview of PC

Hui Chen a

aCUNY Brooklyn College

January 27, 2020

H. Chen (CUNY) CISC 7310X-R6 January 27, 2020 1 / 21



Outline

1 PC Hardware
CPU and Memory
Registers, Memory, and Cache
Memory and Cache
Input and Output

2 x86 Instruction and Assembly Languages

3 Bootstrap

H. Chen (CUNY) CISC 7310X-R6 January 27, 2020 2 / 21



PC Hardware

PC (Personal Computer)

I A PC is a computer that aheres to a few industry standards. The goal
of the standards is that a given peice of software can run on PCs from
multiple vendors.

I The standards have evolved over time.

H. Chen (CUNY) CISC 7310X-R6 January 27, 2020 3 / 21



PC Hardware

Main Components

I CPU
I Memory
I Input/Output (I/O) devices

H. Chen (CUNY) CISC 7310X-R6 January 27, 2020 4 / 21



PC Hardware CPU and Memory

CPU and Memory

A CPU (central procesing unit, or processor) runs a conceptually simple
loop,
1. it reads an address in the Program Counter,
2. it reads a machine instruction from that address in memory,
3. it advances the program counter past the instruction,
4. it executes the instruction, and
5. it repeats the above steps.

Note that some instructions do change the Program Counter including
branches and function calls.

H. Chen (CUNY) CISC 7310X-R6 January 27, 2020 5 / 21



PC Hardware Registers, Memory, and Cache

Storage

A program can access two types of storage directly, registers and memory.

H. Chen (CUNY) CISC 7310X-R6 January 27, 2020 6 / 21



PC Hardware Registers, Memory, and Cache

Registers

I Registers are storage cells inside the CPU itself;
I are capable of holding a machine word-size value, e.g., 16, 32, or 64

bits, and
I the data stored in registers can be read or write written quickly,

typically in a single CPU cycle, as such, they are the fastest storage
for data in a computer system.

H. Chen (CUNY) CISC 7310X-R6 January 27, 2020 7 / 21



PC Hardware Registers, Memory, and Cache

x86 Registers

I The modern x86 provides 8 general purpose 32-bit registers
eax, ebx, ecx, edx, edi, esi, ebp, esp, and eip

I The bottom half of each of the 32-bit registers are the 8 “16-bit
registers”,
ax, bx, cx, dx, di, si, bp, sp, and ip.

I The first 4 16-bit registers have names for the top half and bottom
half of the registers, e.g.,
I al and ah denote the low and the high bits of ax
I similarly there are bl, bh, cl, ch, dl, dh.

I x86 has also 8 80-bit floating point registers and a few
special-purpose registers, e.g.,
I Control registers cr0, cr2, cr3, and cr4
I Debug registers dr0, dr1, dr2, and dr3
I Segment regsiters cs, ds, es, fs, gs, and ss
I Global and local descriptor table pseudo-registers gdtr and ldtr.

Control and segment registers are important to any operating system.
H. Chen (CUNY) CISC 7310X-R6 January 27, 2020 8 / 21



PC Hardware Memory and Cache

Memory and Cache

I Registers are fast but expensive and few.
I Main memory (main random-access memory or RAM) are slower than

registers but are many.
I Cache memory serves as a middle ground between registers and

memory both in access time and size.
I x86 processors store copies of recently-accessed sections of main

memory in on-chip cache memory.
I x86 processor typically have two-levels of cache, a small but fast

first-level cache (L1 cache) and a larger but slower second-level cache
(L2 cache)

I Note that x86 processors hide the cache from programmers.

H. Chen (CUNY) CISC 7310X-R6 January 27, 2020 9 / 21



PC Hardware Memory and Cache

Memory on Intel Core i7: An Example

Table: Intel Core i7 Xeon 5500 at 2.4 GHz

Memory Access time Size
register 1 cycle 64 bytes

L1 cache ∼4 cycles 64 kilobytes
L2 cache ∼10 cycles 4 megabytes
L3 cache ∼40-75 cycles 8 megabytes

remote L3 ∼100-300 cycles
Local DRAM ∼60 nsec

Remote DRAM ∼100 nsec

H. Chen (CUNY) CISC 7310X-R6 January 27, 2020 10 / 21



PC Hardware Input and Output

x86 I/O Instructions

x86 processors provides special I/O that read and write values from device
addresses (to memory or registers on the device)
I in and out instructions
I Device addresses are called I/O ports

Via the device’s ports (or memory), programs can
I examine the device’s status, and
I cause the device to take actions, e.g., by reading or writing to the I/O

ports, the program cause the disk interface hardware to read and
write sectors on the disk.

H. Chen (CUNY) CISC 7310X-R6 January 27, 2020 11 / 21



PC Hardware Input and Output

Memory-Mapped I/O

I On modern x86 architecture, a device can have designated memory
addresses and the processor communicates with the device by reading
and writing values to those addresses.

I Memory-mapped I/O are used for most high-speed devices such as
netowrk, disk, and graphic controllers.

I For backwards compatibility, x86 still have the in and out instructions
and some (legacy) devices use them.

H. Chen (CUNY) CISC 7310X-R6 January 27, 2020 12 / 21



x86 Instruction and Assembly Languages

x86 Instruction Set

I PCs have a processor that implements the x86 instruction set.
I The instruction set was originally designed by Intel and has become a

standard.
I The standard evolves. Thus far, the new standard is backward

compatible with the old standards.
I This backward compatibility creates a little complexity for boot loader

as an x86 processor once powered on simulates an Intel 8088, the
CPU chip in the original IBM PC released in 1981.

I The instruction set is the programmer’s interface to the physical
machine.

H. Chen (CUNY) CISC 7310X-R6 January 27, 2020 13 / 21



x86 Instruction and Assembly Languages

x86 Assembly Language

x86 assembly language has two main syntax branches,
I Intel syntax, originally used for documentation of the x86 platform.

Intel Intel syntax is dominant in the MS-DOS and Windows world
I AT&T syntax is dominant in the Unix world, since Unix was created

at AT&T Bell Labs.

H. Chen (CUNY) CISC 7310X-R6 January 27, 2020 14 / 21



x86 Instruction and Assembly Languages

Comparison between AT&T and Intel Syntax

Let’s take a quick look at,
https://en.wikipedia.org/wiki/X86_assembly_language

H. Chen (CUNY) CISC 7310X-R6 January 27, 2020 15 / 21

https://en.wikipedia.org/wiki/X86_assembly_language


Bootstrap

BIOS

I A PC has a program called the BIOS (Basic Input/Output System)
stored in non-volatile memory, e.g., read-only memory (ROM), on the
motherboard.

I The program contains various low-level routines that are specific to
the hardware supplied with the motherboard.
I Among the routes are the POST. The POST (Power On Self Test) is a

set of routines including the memory check, system bus check, and
other low-level initialization so the CPU can set up the computer
properly.

I One job of the BIOS is to prepare the hardware and then transfer
control to the operating system, specifically, it loads the boot sector
and executes the boot loader code.
I The boot sector contains the boot loader, a short program that loads

the operating system kernel into memory.
I The boot sector is always the first 512-byte sector of the boot disk.
I The BIOS always loads the boot sector at memory address 0x7c00 and

the jumps to that address.
H. Chen (CUNY) CISC 7310X-R6 January 27, 2020 16 / 21



Bootstrap

Bootstrapping PC

1. When the computer powers on, the processor’s registers are set to
some predefined values.
I eip is initialized to 0xfffffff0.
I cr0 is initialized to 0x00000000, i.e, the PE (Protection Enabled) bit

is 0 indicating the processor is running in 16-bit real mode.
2. The processor begins executing instructions at address 0xfffffff0,

which really resides in the BIOS’s memory.
3. Usually this address contains a jump instruction to the BIOS’s POST

(Power-on Self Test) routines.
4. The POST determines the boot device. Modern BIOS

implementations permit the selection of a boot device, allowing
booting from a floppy, CD-ROM, hard disk, or other devices.

5. The POST triggers a soft interrupt by calling the INT 0x19
instruction. The interrupt handler reads 512 bytes from the boot
sector, i.e., the first sector of boot device into the memory at address
0x7c00.

6. It then transfers control to the boot sector code at 0x7c00. The boot
sector code starts the boot-sequence of a particular operating system.
H. Chen (CUNY) CISC 7310X-R6 January 27, 2020 17 / 21



Bootstrap

Real Mode and Protected Mode

x86 processors have two modes, real mode and protected mode.
I When the processor is powered on, it enters the real mode, i.e.,

simulates an Intel 8088 processor, the processor on an IBM PC
released in 1981

I So the boot sector code is 16-bit code.
I To use the features provided by modern x86 architecture, the boot

loader needs to switch the processor to the protected mode.

H. Chen (CUNY) CISC 7310X-R6 January 27, 2020 18 / 21



Bootstrap

PC Memory Map

Figure: Source: https://manybutfinite.com/post/how-computers-boot-up/

H. Chen (CUNY) CISC 7310X-R6 January 27, 2020 19 / 21

https://manybutfinite.com/post/how-computers-boot-up/


Bootstrap

Boot Sector Program Examples

I We discuss a few simple boot sector programs including a simple
interrupt handler.

I To run conveniently the boot sector code, we use PC virtual machines
and emulators.
1. Set up a Debian Linux system on an Oracle VirtualBox virtual machine
2. Install PC emulator and assembly language compiler on the Debian

Linux system
3. Enter a boot sector program, compile and run it using the PC emulator.
4. See the tutorial for more details.

H. Chen (CUNY) CISC 7310X-R6 January 27, 2020 20 / 21



Bootstrap

Virtual Machine Environment

H. Chen (CUNY) CISC 7310X-R6 January 27, 2020 21 / 21


	PC Hardware
	CPU and Memory
	Registers, Memory, and Cache
	Memory and Cache
	Input and Output

	x86 Instruction and Assembly Languages
	Bootstrap

