CISC 7310X R6
Interrupts and I/O

Hui Chen
Department of Computer & Information Science

CUNY Brooklyn College

Outline

* Overview of Computer Architecture
e Overview of I/O devices

* Overview of Interrupts

e Overview of I/0O schemes

e Overview of I/O software

* Experimenting with boot sector code for I/O and
Interrupts

von Neumann Computers

* Process and memory connected by a bus (Von
Neumann, 1945)

* Bus: A common set of wires with a protocol that
specifies commands that can be transmitted

Processor

2/6/2020 CUNY | Brooklyn College 3

An x86 Realization

Coref Core2

Cache Cache

Shared cache

DDR3 Memory

PCle slot

PCle slot

PCle slot

PCle slot

2/6/2020

PCI .
GPU Cores = Graphics
Memory controllers DDR3 Memory
DMI
SATA
Platform USB 2.0 ports
Controller
Hub USB 3.0 ports
5CIe Gigabit Ethernet

More PCle devices

CUNY | Brooklyn College

How does it work?

; - — instruction execution —»

_ 3 cycle instructions
thread of execution | g and

«—— data movement —» d
ata

CPU (*N)

l A 1

5 s

i o = DMA

2 1 E

o (V] [

g o memory

* How a modern computer system works [Figure 1.7 in
Silberschatz et al., 2018]

2/6/2020 CUNY | Brooklyn College

Architecture, OS, and Programming

e Architecture underpins design of OS and programming

* Observing how we wrote our boot sector code

e How about the future?

"T propose to call this tube the von Neumann
bottleneck. The task of a program is to
change the contents of the store in some
major way; when one considers that this task
must be accomplished entirely by pumping
single words back and forth through the von
Neumann bottleneck, the reason for its name
becomes clear.”

- John Backus, 1977

2/6/2020 CUNY | Brooklyn College

Outline

* Overview of Computer Architecture
* Overview of I/O devices

* Overview of Interrupts

e Overview of I/0O schemes

e Overview of I/O software

* Experimenting with boot sector code for I/O and
Interrupts

1/O Devices

* A few general categories
» Storage devices
* Examples: Disks, tapes, solid state drives

* Transmission devices

* Examples: network adapters, modems
* Human-interface devices
* Examples: display screens, keyboard, mouse, touch screen
* Specialized devices

* Examples: control cars, robots, aircrafts, spacecrafts

Port and I/O Bus

e Devices communicate with a computer via a
connection point

e (Physical) port
 Examples: USB port, serial port, parallel port
* Not to confuse with (logical/data) ports

* |/O Bus (or Expansion Bus)

* Examples: PCl bus, SCSI bus

A Typical PC Bus Structure

2000

monitor processor
cache
ggﬁgg:f:r brii%i/trrr:lalzrory — memory SCSI controller
[) PCI bus
IDE disk controller expansion bus keyboard
interface

@ @ { expansion bus
@ @ parallel serial
port port

[Figure 12-1 in Silberschatz et al., 2018]

2/6/2020 CUNY | Brooklyn College

Device Controller

e Devices

 Example: hard disk drives have motors, magnetic
headers, and disks

e Controller

* A collection of electronics that operate a port, a bus, or
a device (some contain small embedded computer)

* Accept and act on commands from the OS

* Present a simpler interface to the OS

* Examples: SATA controller

Design Consideration: Access Right

* A design consideration

 What kind of access right should we give to device
drivers?

* Unrestricted

* Kernel mode

* Relatively easier to design, can affect the others
* Restricted

e User mode

* More difficult to design, isolated from the others

Design Consideration: Load Device
Drivers

e Relink the kernel with the new deriver
* Require reboot

* Add to the kernel an entry indicating a new driver is
needed

* Load the driver during reboot

* Install and run the device driver on the fly

* Hot-pluggable

Device Controller Registers

* Typically have 4 registers or more
* Data-in register
* Read by the host
* Data-out register
* Written by the host

* Status register

* A number of bits indicating the status of the device (e.g., busy, error)
* Control register
* A number of bits indicating the mode of the device

* May have a data buffer

* Examples: video adapter (video memory)

Access Device Controller

e CPU read and write to the device controller
registers and data buffer

* (Logical) I/O ports
* Memory mapped I/O

* See the tutorial for experimenting using bootsector
code

/O Port Space and Port-Mapped I/O

* Each register is assigned an 1/O port number, a
separate address space from memory

* Typically, a 8-bit or 16-bit integer
* All 1/O port numbers form the |/O port space
A CPU has I/O instructions

e Example instruction (in an assembly language):

* IN REG, PORT
* OUT PORT, REG

Example |/O Port Allocation

e Some default values on PCs

2/6/2020

000-00F
020-021
040-043
200-20F
2F8-2FF
320-32F
378-37F
3D0-3DF
3F0-3F7
3F8-3FF

DMA Controller
Interrupt Controller
Timer

Game Controller

Serial Port (Secondary)
Hard-disk Controller
Parallel Port

Graphics Controller
Diskette-drive Controller

Serial Port (Primary)

CUNY | Brooklyn College 17

Memory-Mapped |/O

* Map all the control registers into the memory
address space

* Aregister is assigned to a uniqgue memory address to
which no memory is assigned

* Accessing these registers as if they were main memory

Hybrid Scheme

 Memory-mapped |I/O for data buffer

e Data buffers are mapped to memory address

* Port-mapped I/O for control registers

* Control registers have dedicated |I/O ports

Accessing Device Controllers

Two address

OxFFFF...

I/0 Ports

Memory

I/O ports

/

(a)

One address space

Two address spaces

(b) (c)

Memory-Mapped Hybrid

* Access controller registers [Figure 5-2 in

Tanenbaum & Bos, 2014]

Strength and Weakness

* Strength of memory mapped I/O
e Easier to program
* Easier to protect

 Faster to access

* Weakness (two addresses logically identical, but
physically different)

* More complex to design cache

* More complex to design bus

Outline

* Overview of Computer Architecture
e Overview of I/O devices

* Overview of Interrupts

e Overview of I/0O schemes

e Overview of I/O software

* Experimenting with boot sector code for I/O and
Interrupts

Interrupts

Interrupt transfers control to the interrupt service routine generally

Two sources of interrupts

* External (hardware-generated) interrupts: interrupts are generally caused by
hardware

» Software generated interrupts: a trap or exception is a software-generated
interrupt caused either by an error or a user request

Interrupt vector (interrupt descriptor by Intel)
* Interrupt service routine: interrupt handler, a program processes the interrupt
* Interrupt vector table: consists of interrupt vectors

* Interrupt vector: the address of an interrupt handler

Interrupt architecture must save the address of the interrupted
instruction

Interrupt Timeline: I/O Interrupts

CPU user
process
executing

I/O interrupt

processing
/O idle
device
transferring
l/O transfer I/O transfer
request done request done

2/6/2020 CUNY | Brooklyn College

Interrupt Vectors

* Address to interrupt routines

* Some PC event/interrupt-vector numbering

0 Divide Error

1 Debug Exception

6 Invalid Opcode

32-255 Maskable Interrupts (deviced
generated)

2/6/2020 CUNY | Brooklyn College

25

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf#page=2842

Handling Interrupt

* CPU senses its interrupt-request line after each
instruction

e When itis “lit”, CPU saves the current state

* Example: push registers PSW and PC to the stack

* CPU jumps to the interrupt-handler routine at a fixed
address in the memory

* Interrupt-handler routine completes its task

and restore the CPU state

* Pop the registers from the stack

Design Consideration: Interrupts

* Maskable and nonmaskable interrupts
* Interrupt priorities and interrupt chaining
* Exceptions and software interrupts (traps)

* Precise and imprecise interrupts

Exceptions and Interrupts

* Interrupt mechanism also used for exceptions
* Terminate process, crash system due to hardware error

* Page fault executes when memory access error

» System call executes via trap to trigger kernel to execute
request

* Multi-CPU systems can process interrupts concurrently
 If operating system designed to handle it

* Used for time-sensitive processing, frequent, must be
fast

Outline

* Overview of Computer Architecture
e Overview of I/O devices

* Overview of Interrupts

* Overview of I/O schemes

e Overview of I/O software

* Experimenting with boot sector code for I/O and
Interrupts

/O Schemes

* Busy waiting (polling)

* while (busy) wait; do 1/0O;
* Interrupted 1/0O

* do something else; when (interrupted) do |/0O;
e Direct memory access (DMA)

* initialize DMA; do something else; I/0 done when
interrupted;

Implementing Busy Waiting

o Uk wNPE

©NO U A WN R

Illustrate it with writing a byte

* Host
do
read the busy-bit in the device status register
while (busy)
set the write-bit in the control register
write a byte into the data-out register
set the command-ready bit in the control register

« Device Controller
do
read the command-ready bit
while (not set)
set the busy bit
read the byte in the data-out register
write the byte to the device
if (success) clear the command-ready bit and the busy bit
else set the error bit

Interrupted I/O

e Conduct I/O in an asynchronous fashion

4 Current instruction

Disk drive l Next instruction w
(| 3. Return
1. Interrupt
3 .
CPU Interrupt Disk \
controller controller

I 2. Dispatch f
1 L t ‘U t QJ to handler \1‘
| Interrupt handler -

 Interrupted I/O[Figure 1-11 in Tanenbaum &
Bos, 2014]

2/6/2020

CUNY | Brooklyn College

Interrupted I/O Cycle

CPU

2/6/2020

Initiates 1/0 via the
device driver Device Controller

Execute instructions

(for other tasks) and

sense interrupts after Initiates /O
each instruction

Does I/0 (e.g., spin
Saves CPU state disk)

Runs interrupt handler
to process I/0O

|/O ready or error; raise
interrupt-request line

Restores CPU state

Rhesume processing o

Al NelNals S K

CUNY | Brooklyn College

33

Direct Memory Access

* Aided by a special purpose processor called direct-memory-
access (DMA) controller

* CPU writes a DMA command block into memory
* Pointer to the source of transfer
* Pointer to the destination of transfer
* A count of the number of bytes to be transferred

 CPU writes the address of this block to the DMA controller

* The DMA controller does 1/O by directly access devices and system
bus

 CPU is interrupted when the DMA controller completes the transfer
or encounters an error

1. device driver is told to transfer drive2
data W to buffer at address ”x” CPU

cache

2. device driver tells drive
controller to transfer “c” bytes to
buffer at address “x”

5. when ¢ = 0, DMA interrupts
CPU to signal transfer
completion

3. drive controller initiates DMA transfer

SAS drive controller

4. DMA controller transfers bytes to buffer
“x”, increasing memory address and
decreasing “c” untilc=0

[Figure 12.6 in Silberschatz et al., 2018]

2/6/2020 CUNY | Brooklyn College 35

Outline

* Overview of Computer Architecture
e Overview of I/O devices

* Overview of Interrupts

e Overview of I/0O schemes

* Overview of 1/0 software

* Experimenting with boot sector code for I/O and
Interrupts

/O Software Layers

User-level I/0O software

Device-independent operating system software

Device drivers

Interrupt handlers

Hardware

 [Figure 5-11 in Tanenbaum & Bos, 2014]

2/6/2020 CUNY | Brooklyn College

37

Device Driver

e Each type of controller is different

e Software communicates to the controller, and the
OS

* Adhere to some standard when communicating to
the OS

* Reduce complexity, increase uniformity and
reliability

software

hardware

kernel

kernel I/0 subsystem
SAS keyboard mouse PCle bus 802.11 USB
device device device e device device device
driver driver driver driver driver driver
SAS keyboard mouse PCle bus 802.11 USB
device device device ‘e device device device
controller | controller | controller controller | controller | controller
USBE
SAS y 802.11 devices
devices eyboard mouse “es PCle bus devices (disks,
tapes,
drives)

* [Figure 12.7 in Silberschatz et al., 2018]

2/6/2020

CUNY | Brooklyn College

39

Device Types and Device
Independency

* To achieve device independent, categorize devices based on
general characteristics.

* A couple of dimensions
* Size of transfer: Character-stream or block
* Access order: sequential or random access
* Predictability and responsiveness: Synchronous and asynchronous
e Shared or dedicated
» Speed of operation, e.g., latency, seek time, transfer rate

* Read-write, read only, or write only

Block Devices

* Naming
* Examples on Linux
* by label, by uuid, by id, and by path
* Running examples

o Isblk —f
* Is /dev/disk/

e Read and write a block a time
e Essential behavior

* read(), write()

* For random-access block devices

* seek()

Character Devices

e Read and write a character a time
e Essential behavior

* get(), put()

Outline

* Overview of Computer Architecture
e Overview of I/O devices

* Overview of Interrupts

e Overview of I/0O schemes

e Overview of I/O software

* Experimenting with boot sector code for 1/0O and
interrupts

