
CISC 7310X R6

Interrupts and I/O
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

2/6/2020 1CUNY | Brooklyn College

Outline

• Overview of Computer Architecture

• Overview of I/O devices

• Overview of Interrupts

• Overview of I/O schemes

• Overview of I/O software

• Experimenting with boot sector code for I/O and

interrupts

2/6/2020 CUNY | Brooklyn College 2

von Neumann Computers

• Process and memory connected by a bus (Von

Neumann, 1945)

• Bus: A common set of wires with a protocol that

specifies commands that can be transmitted

2/6/2020 CUNY | Brooklyn College 3

Processor Memory

Bus

An x86 Realization

2/6/2020 CUNY | Brooklyn College 4

How does it work?

2/6/2020 CUNY | Brooklyn College 5

• How a modern computer system works [Figure 1.7 in
Silberschatz et al., 2018]

Architecture, OS, and Programming

• Architecture underpins design of OS and programming

• Observing how we wrote our boot sector code

• How about the future?

2/6/2020 CUNY | Brooklyn College 6

“I propose to call this tube the von Neumann
bottleneck. The task of a program is to
change the contents of the store in some
major way; when one considers that this task
must be accomplished entirely by pumping
single words back and forth through the von
Neumann bottleneck, the reason for its name
becomes clear.”

– John Backus, 1977

Outline

• Overview of Computer Architecture

• Overview of I/O devices

• Overview of Interrupts

• Overview of I/O schemes

• Overview of I/O software

• Experimenting with boot sector code for I/O and

interrupts

2/6/2020 CUNY | Brooklyn College 7

I/O Devices

• A few general categories

• Storage devices

• Examples: Disks, tapes, solid state drives

• Transmission devices

• Examples: network adapters, modems

• Human-interface devices

• Examples: display screens, keyboard, mouse, touch screen

• Specialized devices

• Examples: control cars, robots, aircrafts, spacecrafts

2/6/2020 CUNY | Brooklyn College 8

Port and I/O Bus

• Devices communicate with a computer via a

connection point

• (Physical) port

• Examples: USB port, serial port, parallel port

• Not to confuse with (logical/data) ports

• I/O Bus (or Expansion Bus)

• Examples: PCI bus, SCSI bus

2/6/2020 CUNY | Brooklyn College 9

A Typical PC Bus Structure

2/6/2020 CUNY | Brooklyn College 10

[Figure 12-1 in Silberschatz et al., 2018]

Device Controller

• Devices

• Example: hard disk drives have motors, magnetic
headers, and disks

• Controller

• A collection of electronics that operate a port, a bus, or
a device (some contain small embedded computer)

• Accept and act on commands from the OS

• Present a simpler interface to the OS

• Examples: SATA controller

2/6/2020 CUNY | Brooklyn College 11

Design Consideration: Access Right

• A design consideration

• What kind of access right should we give to device
drivers?

• Unrestricted

• Kernel mode

• Relatively easier to design, can affect the others

• Restricted

• User mode

• More difficult to design, isolated from the others

2/6/2020 CUNY | Brooklyn College 12

Design Consideration: Load Device

Drivers
• Relink the kernel with the new deriver

• Require reboot

• Add to the kernel an entry indicating a new driver is

needed

• Load the driver during reboot

• Install and run the device driver on the fly

• Hot-pluggable

2/6/2020 CUNY | Brooklyn College 13

Device Controller Registers

• Typically have 4 registers or more

• Data-in register

• Read by the host

• Data-out register

• Written by the host

• Status register

• A number of bits indicating the status of the device (e.g., busy, error)

• Control register

• A number of bits indicating the mode of the device

• May have a data buffer

• Examples: video adapter (video memory)

2/6/2020 CUNY | Brooklyn College 14

Access Device Controller

• CPU read and write to the device controller

registers and data buffer

• (Logical) I/O ports

• Memory mapped I/O

• See the tutorial for experimenting using bootsector

code

2/6/2020 CUNY | Brooklyn College 15

I/O Port Space and Port-Mapped I/O

• Each register is assigned an I/O port number, a

separate address space from memory

• Typically, a 8-bit or 16-bit integer

• All I/O port numbers form the I/O port space

• A CPU has I/O instructions

• Example instruction (in an assembly language):

• IN REG, PORT

• OUT PORT, REG

2/6/2020 CUNY | Brooklyn College 16

Example I/O Port Allocation

• Some default values on PCs

2/6/2020 CUNY | Brooklyn College 17

I/O Address Range Device

000-00F DMA Controller

020-021 Interrupt Controller

040-043 Timer

200-20F Game Controller

2F8-2FF Serial Port (Secondary)

320-32F Hard-disk Controller

378-37F Parallel Port

3D0-3DF Graphics Controller

3F0-3F7 Diskette-drive Controller

3F8-3FF Serial Port (Primary)

Memory-Mapped I/O

• Map all the control registers into the memory

address space

• A register is assigned to a unique memory address to

which no memory is assigned

• Accessing these registers as if they were main memory

2/6/2020 CUNY | Brooklyn College 18

Hybrid Scheme

• Memory-mapped I/O for data buffer

• Data buffers are mapped to memory address

• Port-mapped I/O for control registers

• Control registers have dedicated I/O ports

2/6/2020 CUNY | Brooklyn College 19

Accessing Device Controllers

2/6/2020 CUNY | Brooklyn College 20

I/O Ports Memory-Mapped Hybrid

• Access controller registers [Figure 5-2 in
Tanenbaum & Bos, 2014]

Strength and Weakness

• Strength of memory mapped I/O

• Easier to program

• Easier to protect

• Faster to access

• Weakness (two addresses logically identical, but
physically different)

• More complex to design cache

• More complex to design bus

2/6/2020 CUNY | Brooklyn College 21

Outline

• Overview of Computer Architecture

• Overview of I/O devices

• Overview of Interrupts

• Overview of I/O schemes

• Overview of I/O software

• Experimenting with boot sector code for I/O and

interrupts

2/6/2020 CUNY | Brooklyn College 22

Interrupts

• Interrupt transfers control to the interrupt service routine generally

• Two sources of interrupts

• External (hardware-generated) interrupts: interrupts are generally caused by
hardware

• Software generated interrupts: a trap or exception is a software-generated
interrupt caused either by an error or a user request

• Interrupt vector (interrupt descriptor by Intel)

• Interrupt service routine: interrupt handler, a program processes the interrupt

• Interrupt vector table: consists of interrupt vectors

• Interrupt vector: the address of an interrupt handler

• Interrupt architecture must save the address of the interrupted
instruction

2/6/2020 CUNY | Brooklyn College 23

Interrupt Timeline: I/O Interrupts

2/6/2020 CUNY | Brooklyn College 24

Interrupt Vectors

• Address to interrupt routines

• Some PC event/interrupt-vector numbering

2/6/2020 CUNY | Brooklyn College 25

Vector Number Description

0 Divide Error

1 Debug Exception

…

6 Invalid Opcode

…

32-255 Maskable Interrupts (deviced
generated)

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf#page=2842

Handling Interrupt

• CPU senses its interrupt-request line after each
instruction

• When it is “lit”, CPU saves the current state

• Example: push registers PSW and PC to the stack

• CPU jumps to the interrupt-handler routine at a fixed
address in the memory

• Interrupt-handler routine completes its task

and restore the CPU state

• Pop the registers from the stack

2/6/2020 CUNY | Brooklyn College 26

Design Consideration: Interrupts

• Maskable and nonmaskable interrupts

• Interrupt priorities and interrupt chaining

• Exceptions and software interrupts (traps)

• Precise and imprecise interrupts

2/6/2020 CUNY | Brooklyn College 27

Exceptions and Interrupts

• Interrupt mechanism also used for exceptions

• Terminate process, crash system due to hardware error

• Page fault executes when memory access error

• System call executes via trap to trigger kernel to execute
request

• Multi-CPU systems can process interrupts concurrently

• If operating system designed to handle it

• Used for time-sensitive processing, frequent, must be
fast

2/6/2020 CUNY | Brooklyn College 28

Outline

• Overview of Computer Architecture

• Overview of I/O devices

• Overview of Interrupts

• Overview of I/O schemes

• Overview of I/O software

• Experimenting with boot sector code for I/O and

interrupts

2/6/2020 CUNY | Brooklyn College 29

I/O Schemes

• Busy waiting (polling)

• while (busy) wait; do I/O;

• Interrupted I/O

• do something else; when (interrupted) do I/O;

• Direct memory access (DMA)

• initialize DMA; do something else; I/O done when

interrupted;

2/6/2020 CUNY | Brooklyn College 30

Implementing Busy Waiting

• Illustrate it with writing a byte

• Host
1. do

2. read the busy-bit in the device status register

3. while (busy)

4. set the write-bit in the control register

5. write a byte into the data-out register

6. set the command-ready bit in the control register

2/6/2020 CUNY | Brooklyn College 31

• Device Controller
1. do
2. read the command-ready bit
3. while (not set)
4. set the busy bit
5. read the byte in the data-out register
6. write the byte to the device
7. if (success) clear the command-ready bit and the busy bit
8. else set the error bit

Interrupted I/O

• Conduct I/O in an asynchronous fashion

2/6/2020 CUNY | Brooklyn College 32

• Interrupted I/O[Figure 1-11 in Tanenbaum &
Bos, 2014]

Interrupted I/O Cycle

CPU Device Controller

2/6/2020 CUNY | Brooklyn College 33

Initiates I/O via the
device driver

Initiates I/O

Execute instructions
(for other tasks) and

sense interrupts after
each instruction

Does I/O (e.g., spin
disk)

I/O ready or error; raise
interrupt-request line

Saves CPU state

Runs interrupt handler
to process I/O

Restores CPU state

Resume processing of
the other tasks

Direct Memory Access

• Aided by a special purpose processor called direct-memory-
access (DMA) controller

• CPU writes a DMA command block into memory

• Pointer to the source of transfer

• Pointer to the destination of transfer

• A count of the number of bytes to be transferred

• CPU writes the address of this block to the DMA controller

• The DMA controller does I/O by directly access devices and system
bus

• CPU is interrupted when the DMA controller completes the transfer
or encounters an error

2/6/2020 CUNY | Brooklyn College 34

2/6/2020 CUNY | Brooklyn College 35

[Figure 12.6 in Silberschatz et al., 2018]

Outline

• Overview of Computer Architecture

• Overview of I/O devices

• Overview of Interrupts

• Overview of I/O schemes

• Overview of I/O software

• Experimenting with boot sector code for I/O and

interrupts

2/6/2020 CUNY | Brooklyn College 36

I/O Software Layers

2/6/2020 CUNY | Brooklyn College 37

• [Figure 5-11 in Tanenbaum & Bos, 2014]

Device Driver

• Each type of controller is different

• Software communicates to the controller, and the

OS

• Adhere to some standard when communicating to

the OS

• Reduce complexity, increase uniformity and

reliability

2/6/2020 CUNY | Brooklyn College 38

2/6/2020 CUNY | Brooklyn College 39

• [Figure 12.7 in Silberschatz et al., 2018]

Device Types and Device

Independency
• To achieve device independent, categorize devices based on

general characteristics.

• A couple of dimensions

• Size of transfer: Character-stream or block

• Access order: sequential or random access

• Predictability and responsiveness: Synchronous and asynchronous

• Shared or dedicated

• Speed of operation, e.g., latency, seek time, transfer rate

• Read-write, read only, or write only

2/6/2020 CUNY | Brooklyn College 40

Block Devices

• Naming

• Examples on Linux

• by label, by uuid, by id, and by path

• Running examples

• lsblk –f

• ls /dev/disk/

• Read and write a block a time

• Essential behavior

• read(), write()

• For random-access block devices

• seek()

2/6/2020 CUNY | Brooklyn College 41

Character Devices

• Read and write a character a time

• Essential behavior

• get(), put()

2/6/2020 CUNY | Brooklyn College 42

Outline

• Overview of Computer Architecture

• Overview of I/O devices

• Overview of Interrupts

• Overview of I/O schemes

• Overview of I/O software

• Experimenting with boot sector code for I/O and

interrupts

2/6/2020 CUNY | Brooklyn College 43

