CISC 7310X C13a System Security: Basic Concepts

Hui Chen

Department of Computer & Information Science
CUNY Brooklyn College

Acknowledgement

 These slides are a revision of the slides provided by the authors of the textbook via the publisher of the textbook

Outline

- An introduction to system security
 - The Security Problem
 - Program Threats
 - System and Network Threats
 - Cryptography as a Security Tool
 - User Authentication
 - Implementing Security Defenses
 - Firewalling to Protect Systems and Networks
 - Computer-Security Classifications
 - An Example: Windows 7

Defining Security for a System

- Security policy
 - Statement of what is, and is not, allowed
 - It defines "security" for a system, a network, or a site

Composition of Policies

- Mathematically, as a list of allowed (secure) and disallowed states
- In practice, policies often described in natural languages
- If policies conflict, discrepancies may create security vulnerabilities

Enforcing Security Policies

- Security mechanisms
 - Method, tool, or procedure for enforcing a security policy
 - Mechanism can be nontechnical
 - Procedural mechanisms often complement technical mechanisms
- Security vulnerabilities can also be the result of imperfect mechanisms

The Security Problem

- System secure if resources used and accessed as intended under all circumstances (i.e., security policies are strictly adhered to or perfectly enforced)
- Total security is unachievable

Vulnerabilities

- If policies conflict, discrepancies may create security vulnerabilities
- Security vulnerabilities can also be the result of imperfect mechanisms

Intruders, Threat, and Attack

- Intruders (crackers) attempt to breach security
- Threat is potential security violation
- Attack is attempt to breach security

- Attack can be accidental or malicious
- Easier to protect against accidental than malicious misuse

Security Violation Categories

- Security Violation
 = Security Policy Violation
- Breach of confidentiality (which implies there is a confidentiality policy)
 - Unauthorized reading of data
- Breach of integrity
 - Unauthorized modification of data
- Breach of availability
 - Unauthorized destruction of data
- · Theft of service
 - Unauthorized use of resources
- Denial of service (DOS)
 - Prevention of legitimate use

Security Violation Methods

- Masquerading (breach authentication)
 - Pretending to be an authorized user to escalate privileges
- Replay attack
 - As is or with message modification
- Man-in-the-middle attack
 - Intruder sits in data flow, masquerading as sender to receiver and vice versa
- Session hijacking
 - Intercept an already-established session to bypass authentication
- Privilege escalation
 - Common attack type with access beyond what a user or resource is supposed to have

Security Measure Levels

- Impossible to have absolute security, but make cost to perpetrator sufficiently high to deter most intruders
- Security must occur at four levels to be effective:
 - Physical
 - Data centers, servers, connected terminals
 - Application
 - Benign or malicious apps can cause security problems
 - Operating System
 - Protection mechanisms, debugging
 - Network
 - Intercepted communications, interruption, DOS

Security Measures

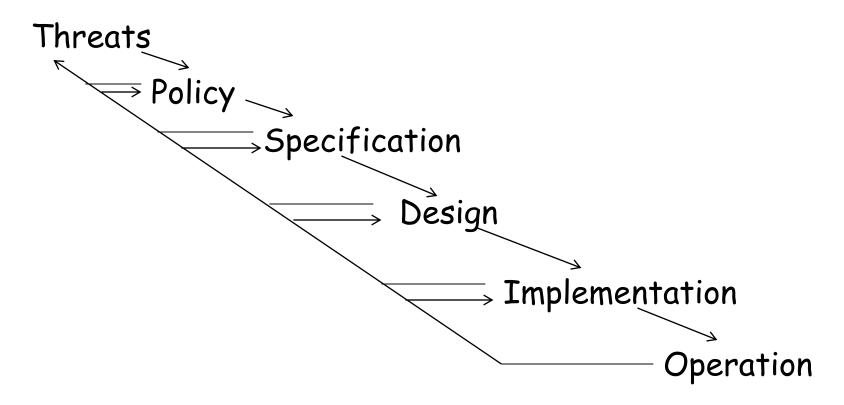
- Security is as weak as the weakest link in the chain
- Humans a risk too via phishing and socialengineering attacks
- But can too much security be a problem?

Four-layered Model of Security

types of attacks logic bugs, design flaws, code injections insecure defaults, platform vulnerabilities sniffing, spoofing, masquerading console access, hardware-based attacks attack prevention methods sandboxing, software restrictions patches, reconfiguration, hardening encryption, authentication, filtering guards, vaults, device data encryption

Goals of Security

- Given a security policy (specifying "secure" and "nonsecure" actions), prevent and detect attacks or recover from attacks via security mechanisms
 - Prevention
 - Detection
 - Recovery


Trust and Assumptions

- Underlie all aspects of security
- Policies: assume or trust policies to
 - Unambiguously partition system states
 - Correctly capture security requirements
- · Mechanisms: assume or trust mechanisms to
 - Assumed to enforce policy
 - Support mechanisms work correctly
- Total security is unachievable

Assurance

- Determine "how much" to trust a system
- Specification
 - Requirements analysis
 - Statement of desired functionality
- Design
 - How system will meet specification
- Implementation
 - Programs/systems that carry out design

Tying Together

Operational Issues

- Cost-Benefit Analysis
 - Is it cheaper to prevent or to recover?
- Risk Analysis
 - Should we protect something?
 - How much should we protect this thing?
- Laws and Customs
 - Are desired security measures illegal?
 - Will people do them?

Human Issues

- Organizational Problems
 - Power and responsibility
 - Financial benefits
- People problems
 - Outsiders and insiders
 - Social engineering

Questions?

- Policy vs. mechanism
- Vulnerabilities,
- Intruders, threads, and attacks
- · Layered model of security measures/mechanism
- · The security problem and the goal of security
- Trust, assumptions, and assurance
- Operational issues and human issues