
CISC 7310X

C10b Deadlock Prevention
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

3/28/2019 1CUNY | Brooklyn College



Acknowledgement

• These slides are a revision of the slides 
provided by the authors of the textbook via 
the publisher of the textbook

3/28/2019 CUNY | Brooklyn College 2



Outline

• Deadlock Prevention

• Invalidating necessary conditions for deadlocks

• Deadlock Avoidance

• Deadlock Detection 

• Recovery from Deadlock

3/28/2019 CUNY | Brooklyn College 3



Deadlock Prevention

• By invalidating one of the four required 
conditions

• Mutual Exclusion

• Hold and wait

• No preemption

• Circular wait

3/28/2019 CUNY | Brooklyn College 4



Invalidating Mutual Exclusion?

• Consider two types of resources

• Sharable resources

• Example

• Read-only files

• Non-sharable resources

• Example

• Printers

• “Sharable” means access simultaneously. 

• Mutual exclusion not required for sharable resources 

• Mutual exclusion must hold for non-sharable resources

• Cannot prevent deadlocks by denying the mutual-exclusion condition

3/28/2019 CUNY | Brooklyn College 5



Invalidating Hold-and-Wait?

• To do it, we must guarantee that whenever a 
process requests a resource, it does not hold 
any other resources

1. Require process to request and be allocated all its 
resources before it begins execution

2. Or allow process to request resources only when 
the process has none allocated to it (e.g., by 
releasing it)

• Problem with these two approaches to invalidate 
Hold-and-Wait

• Low resource utilization; starvation possible; 
impractical

3/28/2019 CUNY | Brooklyn College 6



Invalidating No-Preemption?
• Implies that we should allow preemption for resource 

allocation. But how? 

1. If a process that is holding some resources requests 
another resource that cannot be immediately allocated to 
it, then all resources currently being held are released (i.e., 
call it “yielding”?)

2. We check whether requested resources are allocated to 
some other thread that is waiting for additional resources. 
If so, we preempt the desired resources from the waiting 
thread and allocate them to the requesting thread. (i.e., 
shall we call it “robbing”?)

• Preempted resources are added to the list of resources for which 
the process is waiting

• Process will be restarted only when it can regain its old resources, as 
well as the new ones that it is requesting

3/28/2019 CUNY | Brooklyn College 7



Resource Preemption

• Invalidating No-Preemption by resource 
“preemption”

• Suitable for resources whose state can be easily 
saved and restored later

• such as CPU registers and database transactions

• It cannot generally be applied to such resources 
as mutex locks and semaphores

• Precisely the type of resources where deadlock occurs 
most commonly.

3/28/2019 CUNY | Brooklyn College 8



Invalidating Circular Wait?

• Generally impractical in most situations for 
deadlock prevention by invalidating

• Mutual exclusion, hold-and-wait, and non-
preemption

• Is there any means to invalidate Circular 
Wait?

3/28/2019 CUNY | Brooklyn College 9



Approaches for Invalidating 
Circular Wait
• Resource ordering

• Impose a total ordering of all resource types, 
and require that each process requests 
resources in an increasing order of enumeration

3/28/2019 CUNY | Brooklyn College 10



Resource Ordering

• Simply assign each resource (i.e., mutex 
locks) a unique number.

• Resources must be acquired in order.

3/28/2019 CUNY | Brooklyn College 11



Resource Ordering: Formulation

• Let R = {R1, R2, …, Rm} be the set of resource types.

• Define a one-to-one function F: R → N to each resource 
type a unique integer number.

• A thread initially requests an instance of a resource, Ri, 
can request an instance of resource Rj if and only if 
F(Rj) > F(Ri).

• Alternatively, a thread requesting an instance of 
resource Rj must have released any resources Ri such 
that F(Ri) ≥ F(Rj). 

• Note also that if several instances of the same resource 
type are needed, a single request for all of them must be 
issued.

3/28/2019 CUNY | Brooklyn College 12



Proof by Contradiction

1. Assume that a circular wait exists, i.e., let the set 
of threads involved in the circular wait be {T0, T1, 
…, Tn}, where Ti is waiting for a resource Ri, which 
is held by thread Ti+1. 

• Modulo arithmetic is used on the indexes, so that Tn is 
waiting for a resource Rn held by T0.

2. Then, since thread Ti+1 is holding resource Ri 
while requesting resource Ri+1, we must have F(Ri) 
< F(Ri+1) for all i. But this condition means that 
F(R0) < F(R1) < … < F(Rn) < F(R0). By transitivity, 
F(R0) < F(R0), which is impossible. Therefore, 
there can be no circular wait.

3/28/2019 CUNY | Brooklyn College 13



Remarks: Using Resource 
Ordering
• Resource ordering does not in itself prevent 

deadlock. 

• Application developers must write programs 
that follow the ordering. 

3/28/2019 CUNY | Brooklyn College 14



Resource Ordering: Example

• Two resources (i.e., two mutexes) , and their 
ordering

• Order of first_mutex: 1

• Order of second_mutex: 5

• Which means first_mutex must be acquired 
first, and second_mutex second (because 1 < 
5)

3/28/2019 CUNY | Brooklyn College 15



• Code for 
thread_two

can NOT be 
written as 
illustrated

3/28/2019 CUNY | Brooklyn College 16



Remarks: Using Resource 
Ordering: Challenges
• However, establishing a lock ordering can be 

difficult

• Considering on a system with hundreds or even 
thousands of locks …

• To address this challenge, many Java developers 
have adopted the strategy of using the method 
System.identityHashCode as the function for 
ordering lock acquisition.

3/28/2019 CUNY | Brooklyn College 17



Remarks: Using Resource 
Ordering: Dynamic Acquiring
• Imposing a lock ordering does not guarantee 

deadlock prevention if locks can be acquired 
dynamically

• Example: assume we have a function that transfers 
funds between two bank accounts. 

• To prevent a race condition, each account has an 
associated mutex lock that is obtained from a get_lock() 
function 

• Deadlock is possible if two threads simultaneously invoke 
the transaction() function, transposing different accounts. 

• Thread 1: transaction(checking_account, savings_account, 25.0)

• Thread 2: transaction(savings_account, checking_account, 50.0)
3/28/2019 CUNY | Brooklyn College 18



The transaction Function
void transaction(Account from, Account to, double amount)

{

mutex lock1, lock2;

lock1 = get_lock(from);

lock2 = get_lock(to);

acquire(lock1);

acquire(lock2);

withdraw(from, amount);

deposit(to, amount);

release(lock2);

release(lock1);

}

3/28/2019 CUNY | Brooklyn College 19



Questions?

• Deadlock prevention

• Invalidating any one of the 4 necessary 
conditions

• Mutual exclusion

• Hold and wait

• Non-preemption

• Circular wait

• Approaches and limitations?

3/28/2019 CUNY | Brooklyn College 20


