CISC 7310X
CO9b Process

Synchronization: Classical
Problems

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College

Acknowledgement

* These slides are a revision of the slides
provided by the authors of the textbook via
the publisher of the textbook

Classical Problems of

Synchronization

» Classical problems used to test newly-
proposed synchronization schemes

* Bounded-Buffer Problem
* Readers and Writers Problem

* Dining-Philosophers Problem

Bounded-Buffer Problem

* n buffers, each can hold one item
» Semaphore mutex initialized to the value 1
» Semaphore fu11 initialized to the value O

» Semaphore empty initialized to the value n

Producer Process

while (true) {

/* produce an item in next produced */

wait (empty) ;

wait (mutex) ;

/* add next produced to the buffer */

signal (mutex) ;

signal (full) ;

Consumer Process

while (true) {
wait (full) ;

wait (mutex) ;

/* remove an item from buffer to next consumed *x/

signal (mutex) ;

signal (empty) ;

/* consume the item in next consumed */

Readers-Writers Problem

A data set is shared among a humber of concurrent processes

* Readers - only read the data set; they do not perform any updates

« Writers - can both read and write

Problem - allow multiple readers to read at the same time

 Only one single writer can access the shared data at the same time

Several variations of how readers and writers are considered - all
involve some form of priorities

Shared Data
e Data set

« Semaphore rw mutex initialized o 1
« Semaphore mutex initialized to 1

« Integer read count initialized o O

Writer P rocess

while (true) {
wait (rw mutex) ;

/* writing is performed */

signal (rw_mutex);

Reader Process

while (true) {

wait (mutex) ;
read;count++;

if (read count == 1) wait(rw _mutex);

signal (mutex) ;

/* reading is performed */

wait (mutex) ;
read count--;

if (read count == 0) signal (rw_mutex) ;

signal (mutex) ;

Readers-Writers Problem

Variations

* First variation - no reader kept waiting
unless writer has permission to use shared
object

» Second variation - once writer is ready, it
performs the write ASAP

 Both may have starvation leading to even
more variations

* Problem is solved on some systems by kernel
providing reader-writer locks

Dining-Philosophers Problem

* Philosophers spend their lives alternating thinking and eating

« Don't interact with their neighbors, occasionally try to pick up 2 chopsticks
(one at a time) to eat from bowl

* Need both to eat, then release both when done
* In the case of 5 philosophers
« Shared data
« Bowl of rice (data set)

« Semaphore chopstick [5] initialized to 1

3/28/2019

CUNY | Brooklyn College

12

Dining-Philosophers Problem
Algorithm

» Semaphore Solution
* The structure of Philosopher i:

while (true) {
wait (chopstick[i]);
wait (chopStick[(1 + 1) % 5]),
/* eat for awhile */
signal (chopstick[i]),
signal (chopstick[(i + 1) % 5])
/* think for awhile */

}

* What is the problem with this algorithm?

Monitor Solution to Dining
Philosophers

monitor DiningPhilosophers
{
enum { THINKING; HUNGRY, EATING) state [5] ;

condition self [5];

void pickup (int i) {
state[i] = HUNGRY;
test (i) ;

if (state[i] '= EATING) self[i] .wait;

void putdown (int i) ({
state[i] = THINKING;
// test left and right neighbors
test((i + 4) % 5);
test((i + 1) % 5);

3/28/2019 CUNY | Brooklyn College

15

void test (int i) {
if ((state[(1 + 4) %
(state[i] == HUNGRY)
(state[(1 + 1) % 5]

5] != EATING)
&&
= EATING)) {

state[i] = EATING ;

self[i] .signal () ;
}

initialization code() {
for (int 1 = 0; 1 < 5
state[i] = THINKING;

; i++4)

&&

* Each philosopher i invokes the operations
pickup () and putdown () in the following sequence:

DiningPhilosophers.pickup (i) ,
/** EAT **/
DiningPhilosophers.putdown (1) ,

 No deadlock, but starvation is possible

Questions?

* Bounded-Buffer Problem
* Readers and Writers Problem
* Dining-Philosophers Problem

