
CISC 7310X

C09b Process
Synchronization: Classical

Problems
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

3/28/2019 1CUNY | Brooklyn College

Acknowledgement

• These slides are a revision of the slides
provided by the authors of the textbook via
the publisher of the textbook

3/28/2019 CUNY | Brooklyn College 2

Classical Problems of
Synchronization
• Classical problems used to test newly-

proposed synchronization schemes

• Bounded-Buffer Problem

• Readers and Writers Problem

• Dining-Philosophers Problem

3/28/2019 CUNY | Brooklyn College 3

Bounded-Buffer Problem

• n buffers, each can hold one item

• Semaphore mutex initialized to the value 1

• Semaphore full initialized to the value 0

• Semaphore empty initialized to the value n

3/28/2019 CUNY | Brooklyn College 4

Producer Process
while (true) {

...

/* produce an item in next_produced */

...

wait(empty);

wait(mutex);

...

/* add next produced to the buffer */

...

signal(mutex);

signal(full);

}

3/28/2019 CUNY | Brooklyn College 5

Consumer Process
while (true) {

wait(full);

wait(mutex);

...

/* remove an item from buffer to next_consumed */

...

signal(mutex);

signal(empty);

...

/* consume the item in next consumed */

...

}

3/28/2019 CUNY | Brooklyn College 6

Readers-Writers Problem
• A data set is shared among a number of concurrent processes

• Readers – only read the data set; they do not perform any updates

• Writers – can both read and write

• Problem – allow multiple readers to read at the same time

• Only one single writer can access the shared data at the same time

• Several variations of how readers and writers are considered – all
involve some form of priorities

• Shared Data

• Data set

• Semaphore rw_mutex initialized to 1

• Semaphore mutex initialized to 1

• Integer read_count initialized to 0

3/28/2019 CUNY | Brooklyn College 7

Writer P rocess

while (true) {

wait(rw_mutex);

...

/* writing is performed */

...

signal(rw_mutex);

}

3/28/2019 CUNY | Brooklyn College 8

Reader Process
while (true){

wait(mutex);

read_count++;

if (read_count == 1) wait(rw_mutex);

signal(mutex);

...

/* reading is performed */

...

wait(mutex);

read count--;

if (read_count == 0) signal(rw_mutex);

signal(mutex);

}

3/28/2019 CUNY | Brooklyn College 9

Readers-Writers Problem
Variations
• First variation – no reader kept waiting

unless writer has permission to use shared
object

• Second variation – once writer is ready, it
performs the write ASAP

• Both may have starvation leading to even
more variations

• Problem is solved on some systems by kernel
providing reader-writer locks

3/28/2019 CUNY | Brooklyn College 10

Dining-Philosophers Problem
• Philosophers spend their lives alternating thinking and eating

• Don’t interact with their neighbors, occasionally try to pick up 2 chopsticks
(one at a time) to eat from bowl

• Need both to eat, then release both when done

• In the case of 5 philosophers

• Shared data

• Bowl of rice (data set)

• Semaphore chopstick [5] initialized to 1

3/28/2019 CUNY | Brooklyn College 11

3/28/2019 CUNY | Brooklyn College 12

Dining-Philosophers Problem
Algorithm
• Semaphore Solution

• The structure of Philosopher i:
while (true){

wait (chopstick[i]);

wait (chopStick[(i + 1) % 5]);

/* eat for awhile */

signal (chopstick[i]);

signal (chopstick[(i + 1) % 5]);

/* think for awhile */

}

• What is the problem with this algorithm?

3/28/2019 CUNY | Brooklyn College 13

Monitor Solution to Dining
Philosophers

3/28/2019 CUNY | Brooklyn College 14

monitor DiningPhilosophers

{

enum { THINKING; HUNGRY, EATING) state [5] ;

condition self [5];

void pickup (int i) {

state[i] = HUNGRY;

test(i);

if (state[i] != EATING) self[i].wait;

}

void putdown (int i) {

state[i] = THINKING;

// test left and right neighbors

test((i + 4) % 5);

test((i + 1) % 5);

}

3/28/2019 CUNY | Brooklyn College 15

void test (int i) {

if ((state[(i + 4) % 5] != EATING) &&

(state[i] == HUNGRY) &&

(state[(i + 1) % 5] != EATING)) {

state[i] = EATING ;

self[i].signal () ;

}

}

initialization_code() {

for (int i = 0; i < 5; i++)

state[i] = THINKING;

}

}

3/28/2019 CUNY | Brooklyn College 16

• Each philosopher i invokes the operations
pickup() and putdown() in the following sequence:

DiningPhilosophers.pickup(i);

/** EAT **/

DiningPhilosophers.putdown(i);

• No deadlock, but starvation is possible

3/28/2019 CUNY | Brooklyn College 17

Questions?

• Bounded-Buffer Problem

• Readers and Writers Problem

• Dining-Philosophers Problem

3/28/2019 CUNY | Brooklyn College 18

