
CISC 7310X

C08f A Few Other
Considerations for Paging

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

2/28/2019 1CUNY | Brooklyn College

Acknowledgement

• These slides are a revision of the slides
provided by the authors of the textbook via
the publisher of the textbook

2/28/2019 CUNY | Brooklyn College 2

Outline

• Memory-Mapped Files

• Allocating Kernel Memory

• Other Considerations

• Operating-System Examples

2/28/2019 CUNY | Brooklyn College 3

Allocating Kernel Memory

• Treated differently from user memory

• Often allocated from a free-memory pool

• Kernel requests memory for structures of
varying sizes

• Some kernel memory needs to be contiguous

• i.e. for device I/O

2/28/2019 CUNY | Brooklyn College 4

Buddy System
• Allocates memory from fixed-size segment consisting of physically-contiguous

pages

• Memory allocated using power-of-2 allocator

• Satisfies requests in units sized as power of 2

• Request rounded up to next highest power of 2

• When smaller allocation needed than is available, current chunk split into two buddies of
next-lower power of 2

• Continue until appropriate sized chunk available

• For example, assume 256KB chunk available, kernel requests 21KB

• Split into AL and AR of 128KB each

• One further divided into BL and BR of 64KB

• One further into CL and CR of 32KB each – one used to satisfy request

• Advantage – quickly coalesce unused chunks into larger chunk

• Disadvantage - fragmentation

2/28/2019 CUNY | Brooklyn College 5

2/28/2019 CUNY | Brooklyn College 6

Slab Allocator
• Alternate strategy

• Slab is one or more physically contiguous pages

• Cache consists of one or more slabs

• Single cache for each unique kernel data structure

• Each cache filled with objects – instantiations of the data structure

• When cache created, filled with objects marked as free

• When structures stored, objects marked as used

• If slab is full of used objects, next object allocated from empty slab

• If no empty slabs, new slab allocated

• Benefits include no fragmentation, fast memory request satisfaction

2/28/2019 CUNY | Brooklyn College 7

2/28/2019 CUNY | Brooklyn College 8

Slab Allocation in Linux

• Slab started in Solaris, now wide-spread for
both kernel mode and user memory in various
OSes

• Linux 2.2 had SLAB, now has both SLOB and
SLUB allocators

• SLOB for systems with limited memory

• Simple List of Blocks – maintains 3 list objects for small,
medium, large objects

• SLUB is performance-optimized SLAB removes per-
CPU queues, metadata stored in page structure

2/28/2019 CUNY | Brooklyn College 9

Slab Allocation in Linux
• For example process descriptor is of type struct task_struct

• Approx 1.7KB of memory

• New task -> allocate new struct from cache

• Will use existing free struct task_struct

• Slab can be in three possible states

1. Full – all used

2. Empty – all free

3. Partial – mix of free and used

• Upon request, slab allocator

1. Uses free struct in partial slab

2. If none, takes one from empty slab

3. If no empty slab, create new empty

2/28/2019 CUNY | Brooklyn College 10

Other Considerations

• Prepaging

• Page size

• TLB reach

• Inverted page table

• Program structure

• I/O interlock and page locking

2/28/2019 CUNY | Brooklyn College 11

Prepaging
• To reduce the large number of page faults that occurs

at process startup

• Prepage all or some of the pages a process will need,
before they are referenced

• But if prepaged pages are unused, I/O and memory was
wasted

• Assume s pages are prepaged and α of the pages is used

• Is cost of s * α save pages faults > or < than the cost of
prepaging
s * (1- α) unnecessary pages?

• α near zero  prepaging loses

2/28/2019 CUNY | Brooklyn College 12

Page Size
• Sometimes OS designers have a choice

• Especially if running on custom-built CPU

• Page size selection must take into consideration:

• Fragmentation

• Page table size

• Resolution

• I/O overhead

• Number of page faults

• Locality

• TLB size and effectiveness

• Always power of 2, usually in the range 212 (4,096 bytes) to 222 (4,194,304 bytes)

• On average, growing over time

2/28/2019 CUNY | Brooklyn College 13

TLB Reach
• TLB Reach

• The amount of memory accessible from the TLB

• TLB Reach = (TLB Size) X (Page Size)

• Ideally, the working set of each process is stored in the TLB

• Otherwise there is a high degree of page faults

• Increase the Page Size

• This may lead to an increase in fragmentation as not all applications
require a large page size

• Provide Multiple Page Sizes

• This allows applications that require larger page sizes the
opportunity to use them without an increase in fragmentation

2/28/2019 CUNY | Brooklyn College 14

Program Structure
• Program structure

• int[128,128] data;

• Each row is stored in one page

• Program 1

for (j = 0; j <128; j++)
for (i = 0; i < 128; i++)

data[i,j] = 0;

128 x 128 = 16,384 page faults

• Program 2

for (i = 0; i < 128; i++)
for (j = 0; j < 128; j++)

data[i,j] = 0;

128 page faults

2/28/2019 CUNY | Brooklyn College 15

I/O Interlock

• I/O Interlock

• Pages must sometimes be locked into memory

• Consider I/O

• Pages that are used for copying a file from a
device must be locked from being selected for
eviction by a page replacement algorithm

• Pinning of pages to lock into memory

2/28/2019 CUNY | Brooklyn College 16

Questions?

2/28/2019 CUNY | Brooklyn College 17

