CISC 7310X
CO8f A Few Other

Considerations for Paging

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College

Acknowledgement

* These slides are a revision of the slides
provided by the authors of the textbook via
the publisher of the textbook

Outline

* Memory-Mapped Files
* Allocating Kernel Memory
* Other Considerations

» Operating-System Examples

Allocating Kernel Memory

*» Treated differently from user memory
» Often allocated from a free-memory pool

» Kernel requests memory for structures of
varying sizes

« Some kernel memory needs to be contiguous
* i.e. for device I/0

Buddy System

* Allocates memory from fixed-size segment consisting of physically-contiguous
pages

* Memory allocated using power-of-2 allocator
« Satisfies requests in units sized as power of 2
* Request rounded up to next highest power of 2

* When smaller allocation needed than is available, current chunk split into fwo buddies of
next-lower power of 2

Continue until appropriate sized chunk available
* For example, assume 256KB chunk available, kernel requests 21KB
« Splitinto A_ g Ar of 128KB each
* One further divided into B, and B, of 64KB

One further into C_ and Cy of 32KB each - one used to satisfy request
« Advantage - quickly coalesce unused chunks into larger chunk

 Disadvantage - fragmentation

2/28/2019

physically contiguous pages

256 KB

128 KB 128 KB

64 KB 64 KB
BL BR
32 KB | |32 KB
CL CR

CUNY | Brooklyn College

Slab Allocator

* Alternate strategy
+ Slab is one or more physically contiguous pages
* Cache consists of one or more slabs

« Single cache for each unique kernel data structure

« Each cache filled with objects - instantiations of the data structure

« When cache created, filled with objects marked as free

« When structures stored, objects marked as used

 If slab is full of used objects, next object allocated from empty slab
« If no empty slabs, new slab allocated

* Benefits include no fragmentation, fast memory request satisfaction

kernel objects

3-KB
objects

7-KB
objects

2/28/2019

caches

z

CUNY | Brooklyn College

physically
contiguous
pages

Slab Allocation in Linux

* Slab started in Solaris, how wide-spread for
both kernel mode and user memory in various
OSes

e Linux 2.2 had SLAB, now has both SLOB and
SLURB allocators

« SLOB for systems with limited memory

« Simple List of Blocks - maintains 3 list objects for small,
medium, large objects

« SLUB is performance-optimized SLAB removes per-
CPU queues, metadata stored in page structure

Slab Allocation in Linux

For example process descriptor is of type struct task struct

Approx 1.7KB of memory

New task -> allocate new struct from cache

« Will use existing free struct task struct

Slab can be in three possible states
1. Full - all used
2. Empty - all free

3. Partial - mix of free and used

Upon request, slab allocator
1. Uses free struct in partial slab
2. If none, takes one from empty slab

3. If no empty slab, create new empty

Other Considerations

* Prepaging

* Page size

* TLB reach

* Inverted page table
* Program structure

» I/0 interlock and page locking

Prepaging

To reduce the large number of page faults that occurs
at process startup

Prepage all or some of the pages a process will need,
before they are referenced

But if prepaged pages are unused, I/0 and memory was
wasted

Assume s pages are prepaged and a of the pages is used

« Is cost of s * a save pages faults > or < than the cost of

prepaging
s * (1- a) unnecessary pages?

* anear zero = prepaging loses

Page Size

« Sometimes OS designers have a choice
« Especially if running on custom-built CPU
* Page size selection must take into consideration:
* Fragmentation
* Page table size
Resolution
« I/O overhead
* Number of page faults
* Locality
« TLB size and effectiveness

* Always power of 2, usually in the range 212 (4,096 bytes) to 222 (4,194,304 bytes)

« On average, growing over time

TLB Reach

TLB Reach
« The amount of memory accessible from the TLB

TLB Reach = (TLB Size) X (Page Size)
Ideally, the working set of each process is stored in the TLB

« Otherwise there is a high degree of page faults

Increase the Page Size

 This may lead to an increase in fragmentation as not all applications
require a large page size

Provide Multiple Page Sizes

 This allows applications that require larger page sizes the
opportunity to use them without an increase in fragmentation

Program Structure

* Program structure
* int[128,128] data;
« Each row is stored in one page
* Program 1

for (3 = 0; j <128; j++)
for (1 = 0; 1 < 128; 1i++)
data[i,3j] = 0;

128 x 128 = 16,384 page faults

* Program 2

128 page faults

I/0O Interlock

« I/0 Interlock

* Pages must sometimes be locked into memory
* Consider I/0

* Pages that are used for copying a file from a
device must be locked from being selected for
eviction by a page replacement algorithm

» Pinning of pages to lock into memory

2/28/2019 CUNY | Brooklyn College 16

Questions?

