CISC 7310X CO8d Frame Allocation

Hui Chen

Department of Computer & Information Science CUNY Brooklyn College

Acknowledgement

 These slides are a revision of the slides provided by the authors of the textbook via the publisher of the textbook

Outline

Allocation of Frames

- Thrashing
- Memory-Mapped Files
- Allocating Kernel Memory
- Other Considerations
- Operating-System Examples

Allocation of Frames

- Each process needs *minimum* number of frames
- Example: IBM 370 6 pages to handle SS MOVE instruction:
 - instruction is 6 bytes, might span 2 pages
 - 2 pages to handle from
 - 2 pages to handle to
- Maximum of course is total frames in the system
- Two major allocation schemes
 - fixed allocation
 - priority allocation
- Many variations

Fixed Allocation

- Equal allocation
 - For example, if there are 100 frames (after allocating frames for the OS) and 5 processes, give each process 20 frames
 - Keep some as free frame buffer pool
- Proportional allocation
 - Allocate according to the size of process
 - Dynamic as degree of multiprogramming, process sizes change

Proportional Allocation: Example

	m = 0 +
$-s_i = size of process p_i$	<i>s</i> ¹ = 10
$-S = \sum s_i$	$s_2 = 127$
-m = total number of frames	$a_1 = \frac{10}{107} \cdot 62 \gg 4$
$-a_i = $ allocation for $p_i = \frac{s_i}{S} \times m$	$a_2 = \frac{127}{137} - 62 \gg 57$

m = 61

Global vs. Local Allocation

- Global replacement process selects a replacement frame from the set of all frames; one process can take a frame from another
 - But then process execution time can vary greatly
 - But greater throughput so more common
- Local replacement each process selects from only its own set of allocated frames
 - More consistent per-process performance
 - But possibly underutilized memory

Reclaiming Pages

- A strategy to implement global pagereplacement policy
- All memory requests are satisfied from the free-frame list, rather than waiting for the list to drop to zero before we begin selecting pages for replacement,
- Page replacement is triggered when the list falls below a certain threshold.
- This strategy attempts to ensure there is always sufficient free memory to satisfy new requests

Reclaiming Pages: Example

Non-Uniform Memory Access

- So far all memory accessed equally
- Many systems are NUMA
 - Speed of access to memory varies
 - Example
 - Consider system boards containing CPUs and memory, interconnected over a system bus
 - NUMA multiprocessing architecture

NUMA: Page Replacement

- Optimal performance comes from allocating memory "close to" the CPU on which the thread is scheduled
 - And modifying the scheduler to schedule the thread on the same system board when possible
 - Solved by Solaris by creating lgroups
 - Structure to track CPU / Memory low latency groups
 - Used my schedule and pager
 - When possible schedule all threads of a process and allocate all memory for that process within the Igroup

Questions?

• Frame allocation?