
CISC 7310X

C08b Demand Paging
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

2/28/2019 1CUNY | Brooklyn College

Acknowledgement

• These slides are a revision of the slides
provided by the authors of the textbook via
the publisher of the textbook

2/28/2019 CUNY | Brooklyn College 2

Outline
• Demand Paging

• Copy-on-Write

• Page Replacement

• Allocation of Frames

• Thrashing

• Memory-Mapped Files

• Allocating Kernel Memory

• Other Considerations

• Operating-System Examples

2/28/2019 CUNY | Brooklyn College 3

Paging: Pages to Frames?

• Prepaging: bring entire process into memory at load
time

• Demand paging: bring a page into memory only when
it is needed

• Less I/O needed, no unnecessary I/O

• Less memory needed

• Faster response

• More users

2/28/2019 CUNY | Brooklyn College 4

Demand Paging
• Page is needed reference to it

• invalid reference abort

• not-in-memory bring to memory

• Lazy swapper – never swaps a page into memory unless page
will be needed

• Swapper that deals with pages is a pager

2/28/2019 CUNY | Brooklyn College 5

Valid-Invalid Bit

• With each page table entry a valid–invalid
bit is associated
(v in-memory – memory resident, i not-
in-memory)

• Initially valid–invalid bit is set to i on all
entries

• During MMU address translation, if valid–
invalid bit in page table entry is i page
fault

2/28/2019 CUNY | Brooklyn College 6

Example of a Page Table
Snapshot

2/28/2019 CUNY | Brooklyn College 7

Page Table When Some Pages
Are Not in Main Memory

2/28/2019 CUNY | Brooklyn College 8

Steps in Handling Page Fault
1.If there is a reference to a page, first reference to

that page will trap to operating system
• Page fault

2.Operating system looks at another table to decide:
• Invalid reference abort

• Just not in memory

3.Find free frame

4.Swap page into frame via scheduled disk operation

5.Reset tables to indicate page now in memory
Set validation bit = v

6.Restart the instruction that caused the page fault

2/28/2019 CUNY | Brooklyn College 9

2/28/2019 CUNY | Brooklyn College 10

Aspects of Demand Paging
• Extreme case – start process with no pages in memory

• OS sets instruction pointer to first instruction of process, non-memory-resident -> page
fault

• And for every other process pages on first access

• Pure demand paging

• Actually, a given instruction could access multiple pages -> multiple page faults

• Consider fetch and decode of instruction which adds 2 numbers from memory and stores
result back to memory

• Pain decreased because of locality of reference

• Hardware support needed for demand paging

• Page table with valid / invalid bit

• Secondary memory (swap device with swap space)

• Instruction restart

2/28/2019 CUNY | Brooklyn College 11

Instruction Restart

• Consider an instruction that could access
several different locations
• Block move

• Auto increment/decrement location

• Restart the whole operation?

• What if source and destination overlap?

2/28/2019 CUNY | Brooklyn College 12

Free-Frame List
• When a page fault occurs, the operating system must

bring the desired page from secondary storage into main
memory.

• Most operating systems maintain a free-frame list -- a
pool of free frames for satisfying such requests.

• Operating system typically allocate free frames using a
technique known as zero-fill-on-demand -- the content
of the frames zeroed-out before being allocated.

• When a system starts up, all available memory is placed
on the free-frame list.

2/28/2019 CUNY | Brooklyn College 13

Stages in Demand Paging –
Worse Case
1.Trap to the operating system

2.Save the user registers and process state

3.Determine that the interrupt was a page fault

4.Check that the page reference was legal and
determine the location of the page on the disk

5.Issue a read from the disk to a free frame:

1. Wait in a queue for this device until the read request is
serviced

2. Wait for the device seek and/or latency time

3. Begin the transfer of the page to a free frame

2/28/2019 CUNY | Brooklyn College 14

Stages in Demand Paging –
Worse Case
6.While waiting, allocate the CPU to some other user

7. Receive an interrupt from the disk I/O subsystem (I/O
completed)

8.Save the registers and process state for the other user

9.Determine that the interrupt was from the disk

10.Correct the page table and other tables to show page is
now in memory

11.Wait for the CPU to be allocated to this process again

12.Restore the user registers, process state, and new page
table, and then resume the interrupted instruction

2/28/2019 CUNY | Brooklyn College 15

Performance of Demand Paging
• Three major activities

• Service the interrupt – careful coding means just several hundred instructions needed

• Read the page – lots of time

• Restart the process – again just a small amount of time

• Page Fault Rate 0 p 1

• if p = 0 no page faults

• if p = 1, every reference is a fault

• Effective Access Time (EAT)

EAT = (1 – p) x memory access

+ p (page fault overhead

+ swap page out

+ swap page in)

2/28/2019 CUNY | Brooklyn College 16

Example
• Memory access time = 200 nanoseconds

• Average page-fault service time = 8 milliseconds

• EAT = (1 – p) x 200 + p (8 milliseconds)

= (1 – p x 200 + p x 8,000,000

= 200 + p x 7,999,800

• If one access out of 1,000 causes a page fault, then

EAT = 8.2 microseconds.

This is a slowdown by a factor of 40!!

• If want performance degradation < 10 percent

• 220 > 200 + 7,999,800 x p
20 > 7,999,800 x p

• p < .0000025

• < one page fault in every 400,000 memory accesses

2/28/2019 CUNY | Brooklyn College 17

Demand Paging Optimizations
• Swap space I/O faster than file system I/O even if on the same device

• Swap allocated in larger chunks, less management needed than file system

• Copy entire process image to swap space at process load time

• Then page in and out of swap space

• Used in older BSD Unix

• Demand page in from program binary on disk, but discard rather than paging out when freeing frame

• Used in Solaris and current BSD

• Still need to write to swap space

• Pages not associated with a file (like stack and heap) – anonymous memory

• Pages modified in memory but not yet written back to the file system

• Mobile systems

• Typically don’t support swapping

• Instead, demand page from file system and reclaim read-only pages (such as code)

2/28/2019 CUNY | Brooklyn College 18

Questions

• Concepts of prepaging and demand paging

• Analyzing demand paging

• Performance of demand paging

2/28/2019 CUNY | Brooklyn College 19

Copy-on-Write
• Copy-on-Write (COW) allows both parent and child processes to initially share the

same pages in memory

• If either process modifies a shared page, only then is the page copied

• COW allows more efficient process creation as only modified pages are copied

• In general, free pages are allocated from a pool of zero-fill-on-demand pages

• Pool should always have free frames for fast demand page execution

• Don’t want to have to free a frame as well as other processing on page
fault

• Why zero-out a page before allocating it?

• vfork() variation on fork() system call has parent suspend and child using copy-
on-write address space of parent

• Designed to have child call exec()

• Very efficient

2/28/2019 CUNY | Brooklyn College 20

Example: Before Process 1
Modifies Page C

2/28/2019 CUNY | Brooklyn College 21

Example: After Process 1
Modifies Page C

2/28/2019 CUNY | Brooklyn College 22

Questions?

• Copy-on-write

2/28/2019 CUNY | Brooklyn College 23

