
CISC 7310X

C06b Main Memory: Paging
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

2/28/2019 1CUNY | Brooklyn College



Acknowledgement

• These slides are a revision of the slides 
provided by the authors of the textbook

2/28/2019 CUNY | Brooklyn College 2



Outline

• Paging

• Structure of the Page Table

• Swapping

• Example: The Intel 32 and 64-bit 
Architectures

• Example: ARMv8 Architecture

2/28/2019 CUNY | Brooklyn College 3



Paging

• A memory allocation scheme where physical 
address space of a process can be 
noncontiguous

• Process is allocated physical memory whenever 
there is available physical memory

• Avoids external fragmentation

• Avoids problem of varying sized memory chunks

2/28/2019 CUNY | Brooklyn College 4



Frames and Pages

• Divide physical memory into fixed-sized 
blocks called frames

• Size is power of 2, between 512 bytes and 16 
Mbytes

• Divide logical memory into blocks of same 
size called pages

• Backing store (where binary executable is 
store) likewise split into pages

2/28/2019 CUNY | Brooklyn College 5



Paging: Basic Scheme

• OS keeps track of all free frames

• To run a program of size N pages, need to 
find N free frames and load program

• Map N pages to N frames

• Set up a page table to translate logical to 
physical addresses

• Still have Internal fragmentation (some 
memory may be unused in a frame)

2/28/2019 CUNY | Brooklyn College 6



Example: Basic Paging Scheme

• Virtual/logical address (process)

• 16-bit address

• Address space

• 0 ~ (216 – 1 = 64K - 1)

• Divided into pages, each 4KB

• 32 KB physical memory

• Page frames: pages in the physical 
memory

• 64 KB virtual space: 16 x 4 = 64, so 
16 virtual pages

• 32 KB physical memory: 8 x 4 = 32, 
so 8 page frames

• Transfer between memory and disk 
is always in whole pages

3/22/2018 CUNY | Brooklyn College 7

• [Figure 3-9 in Tanenbaum & Bos, 2014]



Example: Memory Address

• MMU maintains a map per process

• Page size: 4K

• What if

• MOV REG, (8203)

• 8203 is a virtual address, passed 
to MMU (8K = 8192) 

• determines that 8203 is in page 2 in 
virtual address space

• determines that the page is mapped 
to page frame 6 in physical memory

• Maps the virtual address to physical 
address

• 8203 / 4K = 2 (table lookup → 6)

• 8203 % 4K + 6 * 4K = 24587

3/22/2018 CUNY | Brooklyn College 8

• [Figure 3-9 in Tanenbaum & Bos, 2014]



Address Translation Scheme

• Address generated by CPU is divided into:

• Page number (p) – used as an index into a page table which 
contains base address of each page in physical memory

• Page offset (d) – combined with base address to define 
the physical memory address that is sent to the memory 
unit

• For given logical address space 2m and page size 2n

2/28/2019 CUNY | Brooklyn College 9



Example: p, d, m, and n?

• MMU maintains a map per process

• Page size: 4K

• What if

• MOV REG, (8203)

• 8203 is a virtual address, passed to 
MMU (8K = 8192) 

• determines that 8203 is in page 2 in 
virtual address space

• determines that the page is mapped to 
page frame 6 in physical memory

• Maps the virtual address to physical 
address

• 8203 / 4K = 2 (table lookup → 6)

• 8203 % 4K + 6 * 4K = 24587

3/22/2018 CUNY | Brooklyn College 10

• [Figure 3-9 in Tanenbaum & Bos, 2014]



Paging Hardware

2/28/2019 CUNY | Brooklyn College 11

MMU



Example: Constructing Page 
Table

Page number (p) Frame Number (f)

2/28/2019 CUNY | Brooklyn College 12

• [Figure 3-9 in Tanenbaum & Bos, 2014]



Example: Constructing Page 
Table

Page number (p) Frame Number (f)

3   (0011)2 0 (000)2

1   (0001)2 1 (001)2

0   (0000)2 2 (010)2

5   (0101)2 3 (011)2

4   (0100)2 4 (100)2

9   (1001)2 5 (101)2

2   (0010)2 6 (110)2

11   (1011)2 7 (111)2

2/28/2019 CUNY | Brooklyn College 13

• [Figure 3-9 in Tanenbaum & Bos, 2014]



Paging Hardware: Example

• Page & frame sizes: 4K, so d is 12 bits

• Logical address space: 64K

• 64K / 4K = 16,  so p is 4 bits

• p d: 4 + 12 = 16 bits

• Physical address space: 32K

• 32K / 4K = 8, so f is 3 bits

• f d: 3 + 12 = 15 bits

• Then, consider MOV REG, (8203)

• 820310 = 0010 0000 0000 1011

2/28/2019 CUNY | Brooklyn College 14



Paging Hardware: Example: 
Using p to Look up f

Page number (p) Frame Number (f)

3   (0011)2 0 (000)2

1   (0001)2 1 (001)2

0   (0000)2 2 (010)2

5   (0101)2 3 (011)2

4   (0100)2 4 (100)2

9   (1001)2 5 (101)2

2   (0010)2 6 (110)2

11   (1011)2 7 (111)2

2/28/2019 CUNY | Brooklyn College 15

• [Figure 3-9 in Tanenbaum & Bos, 2014]

820310 = 0010 0000 0000 1011
?



Paging Hardware: Example: 
Using p to Look up f

Page number (p) Frame Number (f)

3   (0011)2 0 (000)2

1   (0001)2 1 (001)2

0   (0000)2 2 (010)2

5   (0101)2 3 (011)2

4   (0100)2 4 (100)2

9   (1001)2 5 (101)2

2   (0010)2 6 (110)2

11   (1011)2 7 (111)2

2/28/2019 CUNY | Brooklyn College 16

• [Figure 3-9 in Tanenbaum & Bos, 2014]

820310 = 0010 0000 0000 1011
110



Paging Hardware: Example: f d = 
?
820310 = 0010 0000 0000 1011

110

f d = 110 0000 0000 1011 = ?

2/28/2019 CUNY | Brooklyn College 17



More Paging Examples

2/28/2019 CUNY | Brooklyn College 18



More Paging Examples

• Logical address:  n = 2 and  m = 4. Using a 
page size of 4 bytes and a physical memory 
of 32 bytes (8 pages)

2/28/2019 CUNY | Brooklyn College 19



2/28/2019 CUNY | Brooklyn College 20



Paging: Calculating Internal 
Fragmentation
• Page size = 2,048 bytes

• Process size = 72,766 bytes

• 35 pages + 1,086 bytes

• Internal fragmentation of 2,048 - 1,086 = 962 bytes

• Worst case fragmentation = 1 frame – 1 byte

• On average fragmentation = 1 / 2 frame size

• So small frame sizes desirable?

• But each page table entry takes memory to track

• Page sizes growing over time

• Solaris supports two page sizes – 8 KB and 4 MB

2/28/2019 CUNY | Brooklyn College 21



Free Frames

2/28/2019 CUNY | Brooklyn College 22

Before allocation After allocation



Questions?

• Paging and examples?

• Page and frame

• Page table

• Internal fragmentation

• Allocating and freeing frames

2/28/2019 CUNY | Brooklyn College 23



Implementation of Page Table

• Page table is kept in main memory

• Page-table base register (PTBR) points to the page table

• Page-table length register (PTLR) indicates size of the 
page table

• In this scheme every data/instruction access 
requires two memory accesses

• One for the page table and one for the data / instruction

• The two memory access problem can be solved by 
the use of a special fast-lookup hardware cache 
called  translation look-aside buffers (TLBs) (also 
called associative memory).

2/28/2019 CUNY | Brooklyn College 24



Translation Look-Aside Buffer

• Some TLBs store address-space identifiers 
(ASIDs) in each TLB entry – uniquely identifies 
each process to provide address-space protection 
for that process

• Otherwise need to flush at every context switch

• TLBs typically small (64 to 1,024 entries)

• On a TLB miss, value is loaded into the TLB for 
faster access next time

• Replacement policies must be considered

• Some entries can be wired down for permanent fast 
access

2/28/2019 CUNY | Brooklyn College 25



Hardware

• Associative memory – parallel search 

• Address translation (p, d)

• If p is in associative register, get frame # out

• Otherwise get frame # from page table in memory

2/28/2019 CUNY | Brooklyn College 26

Page # Frame #



Paging Hardware With TLB

2/28/2019 CUNY | Brooklyn College 27



Effective Access Time
• Hit ratio – percentage of times that a page number is found in the  TLB

• An 80% hit ratio means that we find the desired  page number  in the TLB 
80% of the time.

• Suppose that 10 nanoseconds to access memory.  

• If we find the desired page in TLB then a mapped-memory access take 10 ns

• Otherwise we need two memory access so it is 20 ns

• Effective Access Time (EAT)

EAT = 0.80 x 10 + 0.20 x 20 = 12  nanoseconds

implying 20% slowdown in access time

• Consider  amore realistic hit ratio of 99%, 

EAT = 0.99 x 10 + 0.01 x 20 = 10.1ns

implying  only 1% slowdown in access time.
2/28/2019 CUNY | Brooklyn College 28



Questions?

• How to speed up frame lookup?

2/28/2019 CUNY | Brooklyn College 29



Memory Protection
• Memory protection implemented by associating protection bit 

with each frame to indicate if read-only or read-write access 
is allowed

• Can also add more bits to indicate page execute-only, and so on

• Valid-invalid bit attached to each entry in the page table:

• “valid” indicates that the associated page is in the process’ logical 
address space, and is thus a legal page

• “invalid” indicates that the page is not in the process’ logical address 
space

• Or use page-table length register (PTLR)

• Any violations result in a trap to the kernel

2/28/2019 CUNY | Brooklyn College 30



Valid (v) or Invalid (i) Bit In A 
Page Table
• An example

2/28/2019 CUNY | Brooklyn College 31



2/28/2019 CUNY | Brooklyn College 32



Questions?

• Memory protection?

2/28/2019 CUNY | Brooklyn College 33



Shared Pages

• Shared code

• One copy of read-only (reentrant) code shared among 
processes (i.e., text editors, compilers, window systems)

• Similar to multiple threads sharing the same process space

• Also useful for interprocess communication if sharing of 
read-write pages is allowed

• Private code and data 

• Each process keeps a separate copy of the code and data

• The pages for the private code and data can appear 
anywhere in the logical address space

2/28/2019 CUNY | Brooklyn College 34



Shared Pages: Example

2/28/2019 CUNY | Brooklyn College 35



2/28/2019 CUNY | Brooklyn College 36



Questions

• Shared pages? 

2/28/2019 CUNY | Brooklyn College 37



Structure of the Page Table
• Memory structures for paging can get huge using straight-forward methods

• Consider a 32-bit logical address space as on modern computers

• Page size of 4 KB (212)

• Page table would have 1 million entries (232 / 212)

• If each entry is 4 bytes ➔ each process 4 MB of physical address space 
for the  page table alone

• Don’t want to allocate that contiguously in main memory

• One simple solution is to divide the page table into smaller units

• Hierarchical Paging

• Hashed Page Tables

• Inverted Page Tables

2/28/2019 CUNY | Brooklyn College 38



Hierarchical Page Tables

• Break up the logical address space into 
multiple page tables

• A simple technique is a two-level page table

• We then page the page table

2/28/2019 CUNY | Brooklyn College 39



2/28/2019 CUNY | Brooklyn College 40



Two-Level Paging: Example
• A logical address (on 32-bit machine with 1K page size) is divided into:

• a page number consisting of 22 bits

• a page offset consisting of 10 bits

• Since the page table is paged, the page number is further divided 
into:

• a 10-bit page number 

• a 12-bit page offset

• Thus, a logical address is as follows:

• where p1 is an index into the outer page table, and p2 is the 
displacement within the page of the inner page table

• Known as forward-mapped page table

2/28/2019 CUNY | Brooklyn College 41



Address-Translation Scheme

2/28/2019 CUNY | Brooklyn College 42



64-bit Logical Address Space
• Even two-level paging scheme not sufficient

• If page size is 4 KB (212)

• Then page table has 252 entries

• If two level scheme, inner page tables could be 210 4-byte entries

• Address would look like

• Outer page table has 242 entries or 244 bytes

• One solution is to add a 2nd outer page table

• But in the following example the 2nd outer page table is still 234 bytes in size

• And possibly 4 memory access to get to one physical memory location

2/28/2019 CUNY | Brooklyn College 43



Three-Level Paging Scheme

2/28/2019 CUNY | Brooklyn College 44



Hashed Page Tables
• Common in address spaces > 32 bits

• The virtual page number is hashed into a page table

• This page table contains a chain of elements hashing to the same location

• Each element contains (1) the virtual page number (2) the value of the 
mapped page frame (3) a pointer to the next element

• Virtual page numbers are compared in this chain searching for a 
match

• If a match is found, the corresponding physical frame is extracted

• Variation for 64-bit addresses is clustered page tables

• Similar to hashed but each entry refers to several pages (such as 16) rather 
than 1

• Especially useful for sparse address spaces (where memory references are 
non-contiguous and scattered)

2/28/2019 CUNY | Brooklyn College 45



Hashed Page Table

2/28/2019 CUNY | Brooklyn College 46



Inverted Page Table
• Rather than each process having a page table and keeping track of all 

possible logical pages, track all physical pages

• One entry for each real page of memory

• Entry consists of the virtual address of the page stored in that real 
memory location, with information about the process that owns that 
page

• Decreases memory needed to store each page table, but increases 
time needed to search the table when a page reference occurs

• Use hash table to limit the search to one — or at most a few — page-
table entries

• TLB can accelerate access

• But how to implement shared memory?

• One mapping of a virtual address to the shared physical address

2/28/2019 CUNY | Brooklyn College 47



Inverted Page Table 
Architecture

2/28/2019 CUNY | Brooklyn College 48



Oracle SPARC Solaris
• Consider modern, 64-bit operating system example with 

tightly integrated HW

• Goals are efficiency, low overhead

• Based on hashing, but more complex

• Two hash tables

• One kernel and one for all user processes

• Each maps memory addresses from virtual to physical memory

• Each entry represents a contiguous area of mapped virtual memory,

• More efficient than having a separate hash-table entry for each page

• Each entry has  base address and  span (indicating the number of 
pages the entry represents)

2/28/2019 CUNY | Brooklyn College 49



Oracle SPARC Solaris
• TLB holds translation table entries (TTEs) for fast 

hardware lookups

• A cache of TTEs reside in a translation storage buffer (TSB)

• Includes an entry per recently accessed page

• Virtual address reference causes TLB search 

• If miss, hardware walks the in-memory TSB looking for the 
TTE corresponding to the address

• If match found, the CPU copies the TSB entry into the TLB and 
translation completes

• If no match found, kernel interrupted to search the hash table

• The kernel then creates a TTE from the appropriate hash table and 
stores it in the TSB, Interrupt handler returns control to the MMU, 
which completes the address translation.

2/28/2019 CUNY | Brooklyn College 50



Questions?

• Page table too large?

• Hierarchical Paging

• Hashed Page Tables

• Inverted Page Tables

2/28/2019 CUNY | Brooklyn College 51


