
CISC 7310X

C05c: Thread,
Multiprocessor, and Real-

time Scheduling
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

2/28/2019 1CUNY | Brooklyn College

Acknowledgement

• This slides are a revision of the slides by
the authors of the textbook

2/28/2019 CUNY | Brooklyn College 2

Outline

• Thread Scheduling

• Multi-Processor Scheduling

• Real-Time CPU Scheduling

• Operating Systems Examples

• Algorithm Evaluation

2/28/2019 CUNY | Brooklyn College 3

Thread Scheduling
• Distinction between user-level and kernel-level threads

• When threads supported, threads scheduled, not
processes

• Many-to-one and many-to-many models, thread library
schedules user-level threads to run on LWP

• Known as process-contention scope (PCS) since scheduling
competition is within the process

• Typically done via priority set by programmer

• Kernel thread scheduled onto available CPU is system-
contention scope (SCS) – competition among all threads
in system

2/28/2019 CUNY | Brooklyn College 4

Example: Pthread Scheduling

• API allows specifying either PCS or SCS
during thread creation

• PTHREAD_SCOPE_PROCESS schedules threads
using PCS scheduling

• PTHREAD_SCOPE_SYSTEM schedules threads
using SCS scheduling

• Can be limited by OS – Linux and macOS only
allow PTHREAD_SCOPE_SYSTEM

2/28/2019 CUNY | Brooklyn College 5

Pthread Scheduling API

• pthread_attr_getscope

• pthread_attr_setscope

2/28/2019 CUNY | Brooklyn College 6

Questions?

• Thread scheduling

• SCS

• Pthread example

2/28/2019 CUNY | Brooklyn College 7

Multiple-Processor Scheduling

• CPU scheduling more complex when multiple
CPUs are available

• Multiprocess may be any one of the following
architectures:

• Multicore CPUs

• Multithreaded cores

• NUMA systems

• Heterogeneous multiprocessing

2/28/2019 CUNY | Brooklyn College 8

Multiple-Processor Scheduling:
SMP
• Symmetric multiprocessing (SMP) is where

each processor is self scheduling.

• All threads may be in a common ready queue
(a)

• Each processor may have its own private
queue of threads (b)

2/28/2019 CUNY | Brooklyn College 9

2/28/2019 CUNY | Brooklyn College 10

Multicore Processors

• Recent trend to place multiple processor
cores on same physical chip

• Faster and consumes less power

• Multiple threads per core also growing

• Takes advantage of memory stall to make
progress on another thread while memory
retrieve happens

2/28/2019 CUNY | Brooklyn College 11

2/28/2019 CUNY | Brooklyn College 12

Multithreaded Multicore
System

2/28/2019 CUNY | Brooklyn College 13

Each core has > 1 hardware threads.

If one thread has a memory stall, switch to another thread!

Multithreaded Multicore
System
• Chip-multithreading (CMT) assigns each

core multiple hardware threads. (Intel
refers to this as hyperthreading.)

2/28/2019 CUNY | Brooklyn College 14

Multithreaded Multicore
System: Example
• On a quad-core system

with 2 hardware
threads per core, the
operating system sees
8 logical processors.

2/28/2019 CUNY | Brooklyn College 15

Multithreaded Multicore
System: Scheduling
• Two levels of scheduling:

1.The operating system deciding which software
thread to run on a logical CPU

2.How each core decides which hardware thread
to run on the physical core.

2/28/2019 CUNY | Brooklyn College 16

2/28/2019 CUNY | Brooklyn College 17

Multiple-Processor Scheduling –
Load Balancing
• If SMP, need to keep all CPUs loaded for

efficiency

• Load balancing attempts to keep workload
evenly distributed

• Push migration – periodic task checks load on
each processor, and if found pushes task from
overloaded CPU to other CPUs

• Pull migration – idle processors pulls waiting
task from busy processor

2/28/2019 CUNY | Brooklyn College 18

Multiple-Processor Scheduling –
Processor Affinity
• When a thread has been running on one processor, the cache

contents of that processor stores the memory accesses by
that thread.

• We refer to this as a thread having affinity for a processor
(i.e. “processor affinity”)

• Load balancing may affect processor affinity as a thread may
be moved from one processor to another to balance loads, yet
that thread loses the contents of what it had in the cache of
the processor it was moved off of.

• Soft affinity – the operating system attempts to keep a
thread running on the same processor, but no guarantees.

• Hard affinity – allows a process to specify a set of
processors it may run on.

2/28/2019 CUNY | Brooklyn College 19

NUMA and CPU Scheduling

• Non-uniform memory access

• If the operating system is NUMA-aware, it
will assign memory closes to the CPU the
thread is running on.

2/28/2019 CUNY | Brooklyn College 20

2/28/2019 CUNY | Brooklyn College 21

Questions?

• Multiprocessor scheduling

• Design considerations

• Multicore vs muiltproccesor

• SMP

• NUMA

• Load balancing

• CPU Affinity

2/28/2019 CUNY | Brooklyn College 22

Real-Time CPU Scheduling

• Can present obvious challenges

• Soft real-time systems – Critical real-time
tasks have the highest priority, but no
guarantee as to when tasks will be scheduled

• Hard real-time systems – task must be
serviced by its deadline

2/28/2019 CUNY | Brooklyn College 23

Real-Time CPU Scheduling

• Event latency – the amount of time that
elapses from when an event occurs to when
it is serviced.

• Two types of latencies affect performance

1.Interrupt latency – time from arrival of
interrupt to start of routine that services
interrupt

2.Dispatch latency – time for schedule to take
current process off CPU and switch to another

2/28/2019 CUNY | Brooklyn College 24

2/28/2019 CUNY | Brooklyn College 25

Interrupt Latency

2/28/2019 CUNY | Brooklyn College 26

Dispatch Latency

• Conflict phase of dispatch latency:

1.Preemption of any process running in kernel mode

2.Release by low-priority process of resources
needed by high-priority processes

2/28/2019 CUNY | Brooklyn College 27

2/28/2019 CUNY | Brooklyn College 28

Priority-based Scheduling
• For real-time scheduling, scheduler must support preemptive,

priority-based scheduling

• But only guarantees soft real-time

• For hard real-time must also provide ability to meet deadlines

• Processes have new characteristics: periodic ones require CPU at
constant intervals

• Has processing time t, deadline d, period p

• 0 ≤ t ≤ d ≤ p

• Rate of periodic task is 1/p

2/28/2019 CUNY | Brooklyn College 29

2/28/2019 CUNY | Brooklyn College 30

Rate Montonic Scheduling

• A priority is assigned based on the inverse
of its period

• Shorter periods = higher priority;

• Longer periods = lower priority

• P1 is assigned a higher priority than P2.

2/28/2019 CUNY | Brooklyn College 31

Missed Deadlines with Rate
Monotonic Scheduling
• Process P2 misses finishing its deadline at

time 80

2/28/2019 CUNY | Brooklyn College 32

Earliest Deadline First
Scheduling (EDF)
• Priorities are assigned according to

deadlines:

• the earlier the deadline, the higher the priority;

• the later the deadline, the lower the priority

2/28/2019 CUNY | Brooklyn College 33

Proportional Share Scheduling

• T shares are allocated among all processes in
the system

• An application receives N shares where N <
T

• This ensures each application will receive N
/ T of the total processor time

2/28/2019 CUNY | Brooklyn College 34

Example: POSIX Real-Time
Scheduling
• The POSIX.1b standard

• API provides functions for managing real-time threads

• Defines two scheduling classes for real-time threads:

1. SCHED_FIFO - threads are scheduled using a FCFS strategy with a
FIFO queue. There is no time-slicing for threads of equal priority

2. SCHED_RR - similar to SCHED_FIFO except time-slicing occurs for
threads of equal priority

• Defines two functions for getting and setting scheduling policy:

1. pthread_attr_getsched_policy(pthread_attr_t *attr,

int *policy)

2. pthread_attr_setsched_policy(pthread_attr_t *attr,

int policy)

2/28/2019 CUNY | Brooklyn College 35

POSIX Real-Time Scheduling
API
• pthread_attr_getschedpolicy

• pthread_attr_setschedpolicy

2/28/2019 CUNY | Brooklyn College 36

Questions

• Real-time scheduling

• Scheduling algorithms

• Example API

2/28/2019 CUNY | Brooklyn College 37

Operating System Examples

• Linux scheduling

• Windows scheduling

• Solaris scheduling

2/28/2019 CUNY | Brooklyn College 38

Linux Scheduling Through Version 2.5

• Prior to kernel version 2.5, ran variation of standard
UNIX scheduling algorithm

• Version 2.5 moved to constant order O(1) scheduling time
• Preemptive, priority based

• Two priority ranges: time-sharing and real-time

• Real-time range from 0 to 99 and nice value from 100 to 140

• Map into global priority with numerically lower values indicating higher priority

• Higher priority gets larger q

• Task run-able as long as time left in time slice (active)

• If no time left (expired), not run-able until all other tasks use their slices

• All run-able tasks tracked in per-CPU runqueue data structure

• Two priority arrays (active, expired)

• Tasks indexed by priority

• When no more active, arrays are exchanged

• Worked well, but poor response times for interactive processes

2/28/2019 CUNY | Brooklyn College 39

Linux Scheduling in Version 2.6.23 +

• Completely Fair Scheduler (CFS)

• Scheduling classes

• Each has specific priority

• Scheduler picks highest priority task in highest scheduling class

• Rather than quantum based on fixed time allotments, based on proportion of CPU time

• 2 scheduling classes included, others can be added

1. default

2. real-time

• Quantum calculated based on nice value from -20 to +19

• Lower value is higher priority

• Calculates target latency – interval of time during which task should run at least once

• Target latency can increase if say number of active tasks increases

• CFS scheduler maintains per task virtual run time in variable vruntime

• Associated with decay factor based on priority of task – lower priority is higher
decay rate

• Normal default priority yields virtual run time = actual run time

• To decide next task to run, scheduler picks task with lowest virtual run time

2/28/2019 CUNY | Brooklyn College 40

CFS Performance

2/28/2019 CUNY | Brooklyn College 41

Linux Scheduling (Cont.)

• Real-time scheduling according to POSIX.1b

• Real-time tasks have static priorities

• Real-time plus normal map into global
priority scheme

• Nice value of -20 maps to global priority
100

• Nice value of +19 maps to priority 139

2/28/2019 CUNY | Brooklyn College 42

Linux Scheduling (Cont.)

• Linux supports load balancing, but is also
NUMA-aware.

• Scheduling domain is a set of CPU cores
that can be balanced against one another.

• Domains are organized by what they share
(i.e. cache memory.) Goal is to keep threads
from migrating between domains.

2/28/2019 CUNY | Brooklyn College 43

Windows Scheduling

• Windows uses priority-based preemptive scheduling

• Highest-priority thread runs next

• Dispatcher is scheduler

• Thread runs until (1) blocks, (2) uses time slice, (3)
preempted by higher-priority thread

• Real-time threads can preempt non-real-time

• 32-level priority scheme

• Variable class is 1-15, real-time class is 16-31

• Priority 0 is memory-management thread

• Queue for each priority

• If no run-able thread, runs idle thread

2/28/2019 CUNY | Brooklyn College 44

Windows Priority Classes

• Win32 API identifies several priority classes to which a process can belong

• REALTIME_PRIORITY_CLASS, HIGH_PRIORITY_CLASS,
ABOVE_NORMAL_PRIORITY_CLASS,NORMAL_PRIORITY_CLASS,
BELOW_NORMAL_PRIORITY_CLASS, IDLE_PRIORITY_CLASS

• All are variable except REALTIME

• A thread within a given priority class has a relative priority

• TIME_CRITICAL, HIGHEST, ABOVE_NORMAL, NORMAL, BELOW_NORMAL,
LOWEST, IDLE

• Priority class and relative priority combine to give numeric priority

• Base priority is NORMAL within the class

• If quantum expires, priority lowered, but never below base

2/28/2019 CUNY | Brooklyn College 45

Windows Priority Classes (Cont.)

• If wait occurs, priority boosted depending on
what was waited for

• Foreground window given 3x priority boost

• Windows 7 added user-mode scheduling (UMS)

• Applications create and manage threads independent
of kernel

• For large number of threads, much more efficient

• UMS schedulers come from programming language
libraries like C++
Concurrent Runtime (ConcRT) framework

2/28/2019 CUNY | Brooklyn College 46

Windows Priorities

2/28/2019 CUNY | Brooklyn College 47

Solaris
• Priority-based scheduling

• Six classes available

• Time sharing (default) (TS)

• Interactive (IA)

• Real time (RT)

• System (SYS)

• Fair Share (FSS)

• Fixed priority (FP)

• Given thread can be in one class at a time

• Each class has its own scheduling algorithm

• Time sharing is multi-level feedback queue

• Loadable table configurable by sysadmin

2/28/2019 CUNY | Brooklyn College 48

Solaris Dispatch Table

2/28/2019 CUNY | Brooklyn College 49

Solaris Scheduling

2/28/2019 CUNY | Brooklyn College 50

Solaris Scheduling (Cont.)

• Scheduler converts class-specific
priorities into a per-thread global
priority

• Thread with highest priority runs next

• Runs until (1) blocks, (2) uses time slice, (3)
preempted by higher-priority thread

• Multiple threads at same priority selected
via RR

2/28/2019 CUNY | Brooklyn College 51

Algorithm Evaluation

• How to select CPU-scheduling algorithm for
an OS?

• Determine criteria, then evaluate algorithms

• Deterministic modeling

• Type of analytic evaluation

• Takes a particular predetermined workload and
defines the performance of each algorithm for
that workload

• Consider 5 processes arriving at time 0:

2/28/2019 CUNY | Brooklyn College 52

Deterministic Evaluation

• For each algorithm, calculate minimum average waiting time

• Simple and fast, but requires exact numbers for input,
applies only to those inputs

• FCS is 28ms:

• Non-preemptive SFJ is 13ms:

• RR is 23ms:

2/28/2019 CUNY | Brooklyn College 53

Queueing Models
• Describes the arrival of processes, and

CPU and I/O bursts probabilistically

• Commonly exponential, and described by mean

• Computes average throughput, utilization,
waiting time, etc

• Computer system described as network of
servers, each with queue of waiting
processes

• Knowing arrival rates and service rates

• Computes utilization, average queue length,
average wait time, etc

2/28/2019 CUNY | Brooklyn College 54

Little’s Formula
• n = average queue length

• W = average waiting time in queue

• λ = average arrival rate into queue

• Little’s law – in steady state, processes leaving
queue must equal processes arriving, thus:

n = λ x W

• Valid for any scheduling algorithm and arrival
distribution

• For example, if on average 7 processes arrive
per second, and normally 14 processes in queue,
then average wait time per process = 2 seconds

2/28/2019 CUNY | Brooklyn College 55

Simulations

• Queueing models limited

• Simulations more accurate

• Programmed model of computer system

• Clock is a variable

• Gather statistics indicating algorithm performance

• Data to drive simulation gathered via

• Random number generator according to probabilities

• Distributions defined mathematically or empirically

• Trace tapes record sequences of real events in real
systems

2/28/2019 CUNY | Brooklyn College 56

Evaluation of CPU Schedulers by Simulation

2/28/2019 CUNY | Brooklyn College 57

Implementation

Even simulations have limited accuracy

Just implement new scheduler and test in real systems

High cost, high risk

Environments vary

Most flexible schedulers can be modified per-site or per-system

Or APIs to modify priorities

But again environments vary

2/28/2019 CUNY | Brooklyn College 58

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 5

Objectives

• Describe various CPU scheduling algorithms

• Assess CPU scheduling algorithms based on
scheduling criteria

• Explain the issues related to multiprocessor and
multicore scheduling

• Describe various real-time scheduling
algorithms

• Describe the scheduling algorithms used in the
Windows, Linux, and Solaris operating systems

• Apply modeling and simulations to evaluate CPU
scheduling algorithms

2/28/2019 CUNY | Brooklyn College 60

