
CISC 7310X

C04a: Threads and
Multithread Model

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

2/20/2019 1CUNY | Brooklyn College

Acknowledgement

• This slides are a revision of the slides by
the authors of the textbook

2/20/2019 CUNY | Brooklyn College 2

Outline

• Overview

• Multicore Programming

• Multithreading Models

• Thread Libraries

• Implicit Threading

• Threading Issues

• Operating System Examples

2/20/2019 CUNY | Brooklyn College 3

Motivation
• Most modern applications are multithreaded

• Threads run within application

• Multiple tasks with the application can be implemented by separate
threads

• Update display

• Fetch data

• Spell checking

• Answer a network request

• Process creation is heavy-weight while thread creation is light-weight

• Can simplify code, increase efficiency

• Kernels are generally multithreaded

2/20/2019 CUNY | Brooklyn College 4

Single and Multithreaded
Processes

2/20/2019 CUNY | Brooklyn College 5

Multithreaded Server
Architecture

2/20/2019 CUNY | Brooklyn College 6

Benefits

• Responsiveness – may allow continued execution
if part of process is blocked, especially
important for user interfaces

• Resource Sharing – threads share resources of
process, easier than shared memory or message
passing

• Economy – cheaper than process creation,
thread switching lower overhead than context
switching

• Scalability – process can take advantage of
multicore architectures

2/20/2019 CUNY | Brooklyn College 7

Multicore Programming
• Multicore or multiprocessor systems putting pressure on

programmers, challenges include:

• Dividing activities

• Balance

• Data splitting

• Data dependency

• Testing and debugging

• Parallelism implies a system can perform more than one task
simultaneously

• Concurrency supports more than one task making progress

• Single processor / core, scheduler providing concurrency

2/20/2019 CUNY | Brooklyn College 8

Concurrency vs. Parallelism

• Concurrent execution on single-core system

• Parallelism on a multi-core system

2/20/2019 CUNY | Brooklyn College 9

Multicore Programming

• Types of parallelism

• Data parallelism – distributes subsets of the
same data across multiple cores, same operation
on each

• Task parallelism – distributing threads across
cores, each thread performing unique operation

2/20/2019 CUNY | Brooklyn College 10

Data and Task Parallelism

2/20/2019 CUNY | Brooklyn College 11

Amdahl’s Law

• Identifies performance gains from adding
additional cores to an application that has
both serial and parallel components

• S is serial portion

• N processing cores

2/20/2019 CUNY | Brooklyn College 12

Amdahl’s Law: Example

• That is, if application is 75% parallel / 25%
serial, moving from 1 to 2 cores results in
speedup of 1.6 times

• As N approaches infinity, speedup approaches 1
/ S

• Serial portion of an application has
disproportionate effect on performance gained
by adding additional cores

• But does the law take into account
contemporary multicore systems?

2/20/2019 CUNY | Brooklyn College 13

2/20/2019 CUNY | Brooklyn College 14

User Threads and Kernel
Threads
• User threads - management done by user-level threads library

• Three primary thread libraries:

• POSIX Pthreads

• Windows threads

• Java threads

• Kernel threads - Supported by the Kernel

• Examples – virtually all general purpose operating systems, including:

• Windows

• Linux

• Mac OS X

• iOS

• Android

2/20/2019 CUNY | Brooklyn College 15

User and Kernel Threads

2/20/2019 CUNY | Brooklyn College 16

Multithreading Models

• Many-to-One

• One-to-One

• Many-to-Many

2/20/2019 CUNY | Brooklyn College 17

Many-to-One

• Many user-level threads mapped to single kernel
thread

• One thread blocking causes all to block

• Multiple threads may not run in parallel on
muticore system because only one may be in
kernel at a time

• Few systems currently use this model

• Examples:

• Solaris Green Threads

• GNU Portable Threads

2/20/2019 CUNY | Brooklyn College 18

Many-to-One

2/20/2019 CUNY | Brooklyn College 19

One-to-One

• Each user-level thread maps to kernel thread

• Creating a user-level thread creates a kernel
thread

• More concurrency than many-to-one

• Number of threads per process sometimes
restricted due to overhead

• Examples

• Windows

• Linux

2/20/2019 CUNY | Brooklyn College 20

One-to-One

2/20/2019 CUNY | Brooklyn College 21

Many-to-Many Model

• Allows many user level threads to be mapped
to many kernel threads

• Allows the operating system to create a
sufficient number of kernel threads

• Windows with the ThreadFiber package

• Otherwise not very common

2/20/2019 CUNY | Brooklyn College 22

2/20/2019 CUNY | Brooklyn College 23

Two-level Model

• Similar to M:M, except that it allows a user
thread to be bound to kernel thread

2/20/2019 CUNY | Brooklyn College 24

2/20/2019 CUNY | Brooklyn College 25

Questions?

• Concept of thread

• Parallelism and concurrency

• Data and task parallelsm

• Amdahl’s Law

• Multithread model

2/20/2019 CUNY | Brooklyn College 26

