
CISC 7310X

C03b: Inter-Process
Communication

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

2/14/2019 1CUNY | Brooklyn College

Acknowledgement

• This slides are a revision of the slides by
the authors of the textbook

2/11/2019 CUNY | Brooklyn College: CISC 3320 OS 2

Outline

• Interprocess Communication

• IPC in Shared-Memory Systems

• IPC in Message-Passing Systems

• Examples of IPC Systems

• Communication in Client-Server Systems

2/14/2019 CUNY | Brooklyn College 3

Interprocess Communication

• Processes within a system may be
independent or cooperating

2/14/2019 CUNY | Brooklyn College 4

Cooperating Processes

• Independent process cannot affect or be
affected by the execution of another process

• Cooperating process can affect or be affected
by the execution of another process

• Advantages of process cooperation

• Information sharing

• Computation speed-up

• Modularity

• Convenience

2/14/2019 CUNY | Brooklyn College 5

Interprocess Communication

• Cooperating processes need interprocess
communication (IPC)

• Two models of IPC

• Shared memory

• Message passing

2/14/2019 CUNY | Brooklyn College 6

Communications Models

2/14/2019 CUNY | Brooklyn College 7

(a) Shared memory. (b) Message passing.

Questions?

• Concept and benefits of interprocess
communciation

2/14/2019 CUNY | Brooklyn College 8

Producer-Consumer Problem

• Paradigm for cooperating processes

• Producer process produces information that
is consumed by a consumer process

• The information is stored in a memory
buffer

• unbounded-buffer places no practical limit on
the size of the buffer

• bounded-buffer assumes that there is a fixed
buffer size

2/14/2019 CUNY | Brooklyn College 9

Shared Memory

• An area of memory shared among the
processes that wish to communicate

• The communication is under the control of
the users processes not the operating
system.

• Major issues is to provide mechanism that
will allow the user processes to synchronize
their actions when they access shared
memory.

• Synchronization is discussed in great details
in a few weeks

2/14/2019 CUNY | Brooklyn College 10

Bounded-Buffer: Shared-
Memory Solution
• Shared data

• Producer

• Consumer

• At present, we do not address concurrent
access to the shared memory by the
producer and the consumer.

2/14/2019 CUNY | Brooklyn College 11

Shared Data via Shared
Memory
• Share BUFFER_SIZE – 1 items

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

2/14/2019 CUNY | Brooklyn College 12

Producer Process via Shared
Memory
item next_produced;

while (true) {

/* produce an item in next produced */

while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

}

2/14/2019 CUNY | Brooklyn College 13

Consumer Process via Shared
Memory
item next_consumed;

while (true) {

while (in == out)

; /* do nothing */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

/* consume the item in next consumed */

}

2/14/2019 CUNY | Brooklyn College 14

Questions?

• Producer-consumer problem

• Shared memory

2/14/2019 CUNY | Brooklyn College 15

Message Passing

• Mechanism for processes to communicate
and to synchronize their actions

• Message system – processes communicate
with each other without resorting to shared
variables

• IPC facility provides two operations:

• send(message)

• receive(message)

• The message size is either fixed or variable

2/14/2019 CUNY | Brooklyn College 16

Message Passing:
Implementation Issues
• If processes P and Q wish to communicate, they need to:

• Establish a communication link between them

• Exchange messages via send/receive

• Implementation issues:

• How are links established?

• Can a link be associated with more than two processes?

• How many links can there be between every pair of
communicating processes?

• What is the capacity of a link?

• Is the size of a message that the link can accommodate fixed
or variable?

• Is a link unidirectional or bi-directional?

2/14/2019 CUNY | Brooklyn College 17

Communication Link

• Implementation of communication link

• Physical:

• Shared memory

• Hardware bus

• Network

• Logical:

• Direct or indirect

• Synchronous or asynchronous

• Automatic or explicit buffering

2/14/2019 CUNY | Brooklyn College 18

Direct Communication

• Processes must name each other explicitly:

• send (P, message) – send a message to process P

• receive(Q, message) – receive a message from process Q

• Properties of communication link

• Links are established automatically

• A link is associated with exactly one pair of communicating
processes

• Between each pair there exists exactly one link

• The link may be unidirectional, but is usually bi-directional

2/14/2019 CUNY | Brooklyn College 19

Indirect Communication

• Messages are directed and received from mailboxes
(also referred to as ports)

• Each mailbox has a unique id

• Processes can communicate only if they share a mailbox

• Properties of communication link

• Link established only if processes share a common mailbox

• A link may be associated with many processes

• Each pair of processes may share several communication
links

• Link may be unidirectional or bi-directional

2/14/2019 CUNY | Brooklyn College 20

Indirect Communication:
Operations and Primitives
• Operations

• create a new mailbox (port)

• send and receive messages through mailbox

• destroy a mailbox

• Primitives are defined as:

send(A, message) – send a message to mailbox
A

receive(A, message) – receive a message from
mailbox A

2/14/2019 CUNY | Brooklyn College 21

Indirect Communication:
Mailbox Sharing?
• Mailbox sharing

• P1, P2, and P3 share mailbox A

• P1, sends; P2 and P3 receive

• Who gets the message?

• Solutions

• Allow a link to be associated with at most two processes

• Allow only one process at a time to execute a receive
operation

• Allow the system to select arbitrarily the receiver.
Sender is notified who the receiver was.

2/14/2019 CUNY | Brooklyn College 22

Questions?

• Concept of message passing

• Implementation issues

• Direction and indirect communications

2/14/2019 CUNY | Brooklyn College 23

Synchronization
• Message passing may be either blocking or non-blocking

• Blocking is considered synchronous

• Blocking send -- the sender is blocked until the message is received

• Blocking receive -- the receiver is blocked until a message is available

• Non-blocking is considered asynchronous

• Non-blocking send -- the sender sends the message and continue

• Non-blocking receive -- the receiver receives:

A valid message, or

Null message

Different combinations possible

If both send and receive are blocking, we have a rendezvous

2/14/2019 CUNY | Brooklyn College 24

Producer-Consumer via Message
Passing
• Producer

• Consumer

2/14/2019 CUNY | Brooklyn College 25

Producer via Message Passing

message next_produced;

while (true) {

/* produce an item in

next_produced */

send(next_produced);

}

2/14/2019 CUNY | Brooklyn College 26

Consumer via Message Passing

message next_consumed;

while (true) {

receive(next_consumed)

/* consume the item in

next_consumed */

}

2/14/2019 CUNY | Brooklyn College 27

Buffering

• Queue of messages attached to the link.

• Implemented in one of three ways

1.Zero capacity – no messages are queued on a link.
Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages
Sender must wait if link full

3. Unbounded capacity – infinite length
Sender never waits

2/14/2019 CUNY | Brooklyn College 28

Questions?

• Producer-consumer problem via message
passing

• Buffering for message passing

2/14/2019 CUNY | Brooklyn College 29

Examples of IPC System

• POSIX

2/14/2019 CUNY | Brooklyn College 30

POSIX Shared Memory

• Process first creates shared memory segment
shm_fd = shm_open(name, O CREAT | O

RDWR, 0666);

• Also used to open an existing segment

• Set the size of the object

ftruncate(shm_fd, 4096);

• Use mmap() to memory-map a file pointer to
the shared memory object

• Reading and writing to shared memory is done
by using the pointer returned by mmap().

2/14/2019 CUNY | Brooklyn College 31

Mach Message Passing
• Mach communication is message based

• Even system calls are messages

• Each task gets two ports at creation- Kernel and Notify

• Messages are sent and received using the mach_msg() function

• Ports needed for communication, created via

mach_port_allocate()

• Send and receive are flexible, for example four options if mailbox
full:

• Wait indefinitely

• Wait at most n milliseconds

• Return immediately

• Temporarily cache a message

2/14/2019 CUNY | Brooklyn College 32

Windows IPC
• Message-passing centric via advanced local procedure
call (LPC) facility

• Only works between processes on the same system

• Uses ports (like mailboxes) to establish and maintain
communication channels

• Communication works as follows:

• The client opens a handle to the subsystem’s connection port object.

• The client sends a connection request.

• The server creates two private communication ports and returns
the handle to one of them to the client.

• The client and server use the corresponding port handle to send
messages or callbacks and to listen for replies.

2/14/2019 CUNY | Brooklyn College 33

Local Procedure Call (LPC)

2/14/2019 CUNY | Brooklyn College 34

Questions?

• IPC in POSX

• IPC in Mach

• IPC in Windows

2/14/2019 CUNY | Brooklyn College 35

Pipes
• Acts as a conduit allowing two processes to communicate

• The communication pattern follows message passing, but may be implemented
using shared memory

• Issues:

• Is communication unidirectional or bidirectional?

• In the case of two-way communication, is it half or full-duplex?

• Must there exist a relationship (i.e., parent-child) between the communicating
processes?

• Can the pipes be used over a network?

• Ordinary pipes – cannot be accessed from outside the process that
created it. Typically, a parent process creates a pipe and uses it to
communicate with a child process that it created.

• Named pipes – can be accessed without a parent-child relationship

2/14/2019 CUNY | Brooklyn College 36

Ordinary Pipes

• Ordinary Pipes allow communication in standard
producer-consumer style: unidirectional

• Producer writes to one end (the write-end of the
pipe)

• Consumer reads from the other end (the read-end
of the pipe)

• Ordinary pipes are therefore unidirectional

• Require parent-child relationship between
communicating processes

• Windows calls these anonymous pipes

2/14/2019 CUNY | Brooklyn College 37

Ordinary Pipes: Parent-Child
relationship

2/14/2019 CUNY | Brooklyn College 38

Named Pipes

• Named Pipes are more powerful than
ordinary pipes

• Communication is bidirectional

• No parent-child relationship is necessary
between the communicating processes

• Several processes can use the named pipe for
communication

• Provided on both UNIX and Windows
systems

2/14/2019 CUNY | Brooklyn College 39

Questions?

• Concept of pipes

• Ordinary pipes

• Named pipes

2/14/2019 CUNY | Brooklyn College 40

