CISC 7310X
CO3b: Inter-Process

Communication
Hui Chen

Department of Computer & Information Science
CUNY Brooklyn College

Acknowledgement

» This slides are a revision of the slides by
the authors of the textbook

Outline

* Interprocess Communication

* IPC in Shared-Memory Systems

» IPC in Message-Passing Systems

* Examples of IPC Systems

« Communication in Client-Server Systems

Interprocess Communication

* Processes within a system may be
independent or cooperating

Cooperating Processes

» Independent process cannot affect or be
affected by the execution of another process

» Cooperating process can affect or be affected
by the execution of another process

« Advantages of process cooperation
« Information sharing
« Computation speed-up
 Modularity

 Convenience

Interprocess Communication

* Cooperating processes need interprocess
communication (IPC)

» Two models of IPC

« Shared memory

* Message passing

2/14/2019 CUNY | Brooklyn College

Communications Models

(a) Shared memory. (b) Message passing.
I: process A process A
shared memory :I process B
process B

message queue

—> Mo | M4 | My M3 ... |Mpe—

kernel

kernel

(a) (b)

2/14/2019 CUNY | Brooklyn College

Questions?

» Concept and benefits of interprocess
communciation

Producer-Consumer Problem

* Paradigm for cooperating processes

* Producer process produces information that
IS consumed by a consumer process

 The information is stored in a memory
buffer

* unbounded-buffer places no practical limit on
the size of the buffer

* bounded-buffer assumes that there is a fixed
buffer size

Shared Memory

* An area of memory shared among the
processes that wish to communicate

* The communication is under the control of
the users processes not the operating
system.

* Major issues is to provide mechanism that
will allow the user processes to synchronize
their actions when they access shared
memory.

 Synchronization is discussed in great details
ina few weeks

Bounded-Buffer: Shared-

Memory Solution
* Shared data

* Producer

« Consumer

* At present, we do not address concurrent
access to the shared memory by the
producer and the consumer.

Shared Data via Shared

Memory
* Share BUFFER_SIZE -1 items

#define BUFFER SIZE 10

typedef struct {
} item;
item buffer[BUFFER SIZE];

int in = 0;

int out = 0;

Producer Process via Shared
Memory

item next;produced;

while (true) {
/* produce an item in next produced */
while (((in + 1) % BUFFER SIZE) == out)
; /* do nothing */
buffer[in] = next produced;
in = (in + 1) % BUFFER SIZE;
}

Consumer Process via Shared
Memory

item next_consumed;

while (true) {
while (in == out)

; /* do nothing */
next consumed = buffer[out];

(out + 1) % BUFFER SIZE;

out

/* consume the item in next consumed */

Questions?

* Producer-consumer problem

* Shared memory

Message Passing

* Mechanism for processes to communicate
and to synchronize their actions

* Message system - processes communicate
with each other without resorting to shared
variables

» IPC facility provides two operations:
* send(message)
« receive(message)

» The message size is either fixed or variable

Message Passing:
Implementation Issues

 If processes P and Q wish to communicate, they need to:
* Establish a communication link between them

« Exchange messages via send/receive
* Implementation issues:
* How are links established?
* Can a link be associated with more than two processes?

« How many links can there be between every pair of
communicating processes?

* What is the capacity of a link?

 Is the size of a message that the link can accommodate fixed
or variable?

« Is a link unidirectional or bi-directional?

Communication Link

» Implementation of communication link
* Physical:
 Shared memory
« Hardware bus
 Network
* Logical:
* Direct or indirect
 Synchronous or asynchronous
« Automatic or explicit buffering

Direct Communication

* Processes must name each other explicitly:
 send (P, message) - send a message to process P

« receive(Q, message) - receive a message from process Q

* Properties of communication link
* Links are established automatically

* A link is associated with exactly one pair of communicating
processes

 Between each pair there exists exactly one link

 The link may be unidirectional, but is usually bi-directional

Indirect Communication

* Messages are directed and received from mailboxes
(also referred to as ports)

* Each mailbox has a unique id

* Processes can communicate only if they share a mailbox

* Properties of communication link

Link established only if processes share a common mailbox

A link may be associated with many processes

Each pair of processes may share several communication
links

Link may be unidirectional or bi-directional

Indirect Communication:
Operations and Primitives

* Operations
* create a new mailbox (port)
« send and receive messages through mailbox
* destroy a mailbox

* Primitives are defined as:

send(A, message) - send a message to mailbox
A

receive(A, message) - receive a message from
mailbox A

Indirect Communication:
Mailbox Sharing?

* Mailbox sharing
« P, P,, and P; share mailbox A
 P,,sends; P, and P; receive

* Who gets the message?

* Solutions
« Allow a link to be associated with at most two processes

« Allow only one process at a time to execute a receive
operation

* Allow the system to select arbitrarily the receiver.
Sender is notified who the receiver was.

Questions?

* Concept of message passing
» Implementation issues

e Direction and indirect communications

Synchronization

Message passing may be either blocking or non-blocking

Blocking is considered synchronous
« Blocking send -- the sender is blocked until the message is received
« Blocking receive -- the receiver is blocked until a message is available
Non-blocking is considered asynchronous
* Non-blocking send -- the sender sends the message and continue
« Non-blocking receive -- the receiver receives:
A valid message, or
Null message
Different combinations possible

If both send and receive are blocking, we have a rendezvous

2/14/2019 CUNY | Brooklyn College

24

Producer-Consumer via Message
Passing

* Producer

« Consumer

Producer via Message Passing

message next produced;

while (true) {
/* produce an item in
next produced */

send (next produced) ;

Consumer via Message Passing

message next consumed;

while (true) {
receive (next consumed)

/* consume the item in
next consumed *x /

}

Buffering

* Queue of messages attached to the link.
» Implemented in one of three ways

1.Zero capacity - no messages are queued on a link.
Sender must wait for receiver (rendezvous)

2. Bounded capacity - finite length of n messages
Sender must wait if link full

3. Unbounded capacity - infinite length
Sender never waits

Questions?

* Producer-consumer problem via message
passing

» Buffering for message passing

Examples of IPC System

* POSTX

POSIX Shared Memory

* Process first creates shared memory segment
shm fd = shm open(name, O CREAT | O
RDWR, 0666) ;

* Also used to open an existing segment
* Set the size of the object
ftruncate (shm fd, 4096);

« Use mmap () to memory-map a file pointer to
the shared memory object

 Reading and writing to shared memory is done
by using the pointer returned by mmap ().

Mach Message Passing

« Mach communication is message based

Even system calls are messages

Each task gets two ports at creation- Kernel and Notify
Messages are sent and received using the mach msg() function
Ports needed for communication, created via

mach port allocate()

Send and receive are flexible, for example four options if mailbox
full:

« Wait indefinitely
* Wait at most n milliseconds
+ Return immediately

« Temporarily cache a message

Windows IPC

« Message-passing centric via advanced local procedure
call (LPC) facility

« Only works between processes on the same system

 Uses ports (like mailboxes) to establish and maintain
communication channels

« Communication works as follows:
« The client opens a handle to the subsystem's connection port object.
« The client sends a connection request.

« The server creates two private communication ports and returns
the handle to one of them to the client.

« The client and server use the corresponding port handle to send
messages or callbacks and to listen for replies.

Local Procedure Call (LPC)

Client

Connection
request

Connection

Handle

Server

Port

Handle

Communication Port

Client

!

Communication Port

Server

Handle

2/14/2019

>

Shared
Section Object
(> 256 bytes)

<

CUNY | Brooklyn College

34

Questions?

« TIPC in POSX
« TPC in Mach
* TPC in Windows

Pipes

Acts as a conduit allowing two processes to communicate

« The communication pattern follows message passing, but may be implemented
using shared memory

 Tssues:
« TIs communication unidirectional or bidirectional?
* In the case of two-way communication, is it half or full-duplex?

* Must there exist a relationship (i.e., parent-child) between the communicating
processes?

* Can the pipes be used over a network?

« Ordinary pipes - cannot be accessed from outside the process that
created it. Typically, a rar'en‘r process creates a pipe and uses it to
communicate with a child process that it created.

* Named pipes - can be accessed without a parent-child relationship

Ordinary Pipes

* Ordinary Pipes allow communication in standard
producer-consumer style: unidirectional

* Producer writes to one end (the write-end of the
pipe)

« Consumer reads from the other end (the read-end
of the pipe)

* Ordinary pipes are therefore unidirectional

* Require parent-child relationship between
communicating processes

« Windows calls these anonymous pipes

Ordinary Pipes: Parent-Child
relationship

Parent Child

fd [0] fd [0]

fd [1]2 | fd [1]

pipe)
(===

>

2/14/2019 CUNY | Brooklyn College 38

Named Pipes

* Named Pipes are more powerful than
ordinary pipes
« Communication is bidirectional

* No parent-child relationship is necessary
between the communicating processes

e Several processes can use the named pipe for
communication

* Provided on both UNIX and Windows
systems

Questions?

» Concept of pipes
 Ordinary pipes
* Named pipes

