
CISC 7310X

C03a: Process Management
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

2/14/2019 1CUNY | Brooklyn College

Acknowledgement

• This slides are a revision of the slides by
the authors of the textbook

2/11/2019 CUNY | Brooklyn College: CISC 3320 OS 2

Outline

• Process Concept

• Process Scheduling

• Operations on Processes

• Interprocess Communication

• IPC in Shared-Memory Systems

• IPC in Message-Passing Systems

• Examples of IPC Systems

• Communication in Client-Server Systems

2/14/2019 CUNY | Brooklyn College 3

Program and Executing a
Program
• A program is passive entity stored on disk in

the form of executable file

• An operating system provides means to
execute a program

• e.g., execution of program started via GUI mouse
clicks, command line entry of its name

2/14/2019 CUNY | Brooklyn College 4

Process

• A process is a program in execution, as such,
a program is a passive entity while a process
is an active one

• A program becomes a process when
executable file loaded into memory

• One program can be several processes

• Consider multiple users executing the same
program

2/14/2019 CUNY | Brooklyn College 5

Process: Multiple Parts

• A process consists of multiple parts, generally,

• The program code, also called text section

• Current activity including program counter,
processor registers

• Stack containing temporary data

• Function parameters, return addresses, local variables

• Data section containing global variables

• Heap containing memory dynamically allocated during
run time

2/14/2019 CUNY | Brooklyn College 6

Process in Memory

2/14/2019 CUNY | Brooklyn College 7

Memory Layout of a C Program

2/14/2019 CUNY | Brooklyn College 8

Questions?

• Concept of process

• Parts of a process

• Memory layout

2/14/2019 CUNY | Brooklyn College 9

Process State

• As a process executes, it changes state

• New: The process is being created

• Running: Instructions are being executed

• Waiting: The process is waiting for some event
to occur

• Ready: The process is waiting to be assigned to
a processor

• Terminated: The process has finished execution

2/14/2019 CUNY | Brooklyn College 10

Transition of Process States

2/14/2019 CUNY | Brooklyn College 11

Process Control Block (PCB)
Information associated with each process (also called task control

block)

• Process state – running, waiting, etc

• Program counter – location of instruction to next execute

• CPU registers – contents of all process-centric registers

• CPU scheduling information- priorities, scheduling queue pointers

• Memory-management information – memory allocated to the process

• Accounting information – CPU used, clock time elapsed since start,
time limits

• I/O status information – I/O devices allocated to process, list of
open files

2/14/2019 CUNY | Brooklyn College 12

2/14/2019 CUNY | Brooklyn College 13

Threads

• So far, a process has a single thread of
execution

• Consider having multiple program counters per
process

• Multiple locations can execute at once

• Multiple threads of control -> threads

• Must then have storage for thread details,
multiple program counters in PCB

• Explore in detail next week

2/14/2019 CUNY | Brooklyn College 14

Questions?

• Concept of process state

• Concept of process state transition

• Data structure for managing and
representing process

• Concepts of thread of control/execution and
thread.

2/14/2019 CUNY | Brooklyn College 15

Process Representation in Linux

• Represented by the C structure
task_struct

2/14/2019 CUNY | Brooklyn College 16

pid t_pid; /* process identifier */

long state; /* state of the process */

unsigned int time_slice /* scheduling information */

struct task_struct *parent;/* this process’s parent */

struct list_head children; /* this process’s children */

struct files_struct *files;/* list of open files */

struct mm_struct *mm; /* address space of this process

*/

https://github.com/torvalds/linux/blob/master/include/linux/sched.h#L592
https://github.com/torvalds/linux/blob/master/include/linux/sched.h#L592

Process Representation in Linux:
Task List

2/14/2019 CUNY | Brooklyn College 17

pid t_pid; /* process identifier */

long state; /* state of the process */

unsigned int time_slice /* scheduling information */

struct task_struct *parent;/* this process’s parent */

struct list_head children; /* this process’s children */

struct files_struct *files;/* list of open files */

struct mm_struct *mm; /* address space of this process

*/

Questions?

• Process representation in Linux?

2/14/2019 CUNY | Brooklyn College 18

Process Scheduling

• Maximize CPU use, quickly switch processes
onto CPU core

• Process scheduler selects among available
processes for next execution on CPU core

• Maintains scheduling queues of processes

• Ready queue – set of all processes residing in main
memory, ready and waiting to execute

• Wait queues – set of processes waiting for an event
(i.e. I/O)

• Processes migrate among the various queues

2/14/2019 CUNY | Brooklyn College 19

Ready and Wait Queues

2/14/2019 CUNY | Brooklyn College 20

Representation of Process
Scheduling

2/14/2019 CUNY | Brooklyn College 21

CPU Switch From Process to
Process

2/14/2019 CUNY | Brooklyn College 22

Context Switch

• A context switch occurs when the CPU
switches from one process to another.

2/14/2019 CUNY | Brooklyn College 23

Context Switch: What must
Happen?
• When CPU switches to another process, the

system must save the state of the old process
and load the saved state for the new process.

• Context of a process represented in the PCB

• Context-switch time is overhead; the system
does no useful work while switching

• The more complex the OS and the PCB ➔ the longer
the context switch

• Time dependent on hardware support

• Some hardware provides multiple sets of registers per
CPU ➔ multiple contexts loaded at once

2/14/2019 CUNY | Brooklyn College 24

Questions?

• Concept of process scheduling

• Concept of context switch

• When must happen during a context switch?

2/14/2019 CUNY | Brooklyn College 25

Multitasking in Mobile Systems

• Some mobile systems (e.g., early version of iOS) allow only one
process to run, others suspended

• Due to screen real estate, user interface limits iOS provides for a

• Single foreground process- controlled via user interface

• Multiple background processes– in memory, running, but not on the display, and
with limits

• Limits include single, short task, receiving notification of events, specific long-
running tasks like audio playback

• Android runs foreground and background, with fewer limits

• Background process uses a service to perform tasks

• Service can keep running even if background process is suspended

• Service has no user interface, small memory use

2/14/2019 CUNY | Brooklyn College 26

Questions?

• Multitasking in mobile systems?

• Why?

2/14/2019 CUNY | Brooklyn College 27

Operations on Processes

• System must provide mechanisms for:

• process creation

• process termination

2/14/2019 CUNY | Brooklyn College 28

Process Creation
• Parent process create children processes, which, in turn

create other processes, forming a tree of processes

• Generally, process identified and managed via a process
identifier (pid)

• Resource sharing options

• Parent and children share all resources

• Children share subset of parent’s resources

• Parent and child share no resources

• Execution options

• Parent and children execute concurrently

• Parent waits until children terminate

2/14/2019 CUNY | Brooklyn College 29

A Tree of Processes in Linux

2/14/2019 CUNY | Brooklyn College 30

Process Creation: Design
Consideration
• Physical and logical resources

• CPU time, memory, files, I/O devices

• Child obtains from the OS

• Child is constrained to a subset of the parent process’s
resources

• Program data

• Parent process may pass initialization data to child process

• Address space

• Child duplicate of parent

• Child has a program loaded into it

2/14/2019 CUNY | Brooklyn College 31

Process Creation in UNIX

• fork() system call creates new process

• exec() system call used after a fork() to
replace the process’ memory space with a
new program

• Parent process calls wait() for the child
to terminate

2/14/2019 CUNY | Brooklyn College 32

Example Application in Linux

• See the example program

2/14/2019 CUNY | Brooklyn College 33

https://github.com/CISC7310SP18/SamplePrograms/tree/master/W3_Process/creation

Example Application in Windows

• See the example program

2/14/2019 CUNY | Brooklyn College 34

https://github.com/CISC7310SP18/SamplePrograms/tree/master/W3_Process/creation

Questions?

• Process creation

• Using system calls to create processes

2/14/2019 CUNY | Brooklyn College 35

Process Termination

• Processes executes last statement (normal
process termination)

• Parent terminates child process (abort the
child process)

2/14/2019 CUNY | Brooklyn College 36

Normal Process Termination

• Process executes last statement and
then asks the operating system to
delete it

• e.g., in UNIX, using the exit() system call.

• Returns status data from child to parent (e.g.,
via wait() in UNIX)

• Process’ resources are deallocated by operating
system

2/14/2019 CUNY | Brooklyn College 37

Abort Child Process

• Parent may terminate the execution of
children processes.

• e.g., using the abort() system call

• Some reasons for doing so:

• Child has exceeded allocated resources

• Task assigned to child is no longer required

• The parent is exiting and the operating systems does
not allow a child to continue if its parent terminates

2/14/2019 CUNY | Brooklyn College 38

Terminate Children or Wait for
Children?
• Allow child process to exist without the

existence of the parent?

• Allow parent to wait for child to complete?

2/14/2019 CUNY | Brooklyn College 39

Terminate All Children

• Some operating systems do not allow child to
exists if its parent has terminated.

• If a process terminates, then all its children
must also be terminated.

• cascading termination. All children,
grandchildren, etc. are terminated.

• The termination is initiated by the operating
system.

2/14/2019 CUNY | Brooklyn College 40

Wait for Children

• The parent process may wait for termination
of a child process

• e.g., in UNIX, by using the wait()system call.
The call returns status information and the pid
of the terminated process

pid = wait(&status);

2/14/2019 CUNY | Brooklyn College 41

Zombie Process

• A process that has terminated, but whose
parent has not yet called wait(), is known as
a zombie process.

• All processes transition to this state when
they terminate, but generally they exist as
zombies only briefly.

• Once the parent calls wait(), the process
identifier of the zombie process and its
entry in the process table are released.

2/14/2019 CUNY | Brooklyn College 42

Orphan Process

• A parent did not invoke wait() and instead
terminated, thereby leaving its child
processes as orphans.

• In UNIX, assign new parent (initd/systemd)

2/14/2019 CUNY | Brooklyn College 43

Questions?

• Process termination?

• Process termination in UNIX?

• Zombie?

• Orphan?

2/14/2019 CUNY | Brooklyn College 44

Mobile Systems: Design
Consideration
• Mobile operating systems often have to

terminate processes to reclaim system
resources such as memory.

2/14/2019 CUNY | Brooklyn College 45

Android Process Importance
Hierarchy
• In Android, process are ranked from most to

least important:

• Foreground process

• Visible process

• Service process

• Background process

• Empty process

• Android will begin terminating processes that
are least important.

2/14/2019 CUNY | Brooklyn College 46

Multiprocess Architecture in
Chrome Browser
• Some Web browsers ran as single process

• If one web site causes trouble, entire browser can hang or
crash

• Google Chrome Browser is multiprocess with 3
different types of processes:

• Browser process manages user interface, disk and network
I/O

• Renderer process renders web pages, deals with HTML,
Javascript. A new renderer created for each website
opened

• Runs in sandbox restricting disk and network I/O, minimizing
effect of security exploits

• Plug-in process for each type of plug-in

2/14/2019 CUNY | Brooklyn College 47

New Renderer Created for Each
Website Opened

2/14/2019 CUNY | Brooklyn College 48

Questions?

• Some design consideration for Android?

• Some design consideration for Web
browsers

2/14/2019 CUNY | Brooklyn College 49

