CISC 7310X
CO3a: Process Management

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College

Acknowledgement

» This slides are a revision of the slides by
the authors of the textbook

Outline

* Process Concept

* Process Scheduling

 Operations on Processes

* Interprocess Communication

 IPC in Shared-Memory Systems

» IPC in Message-Passing Systems

* Examples of IPC Systems

« Communication in Client-Server Systems

Program and Executing a

Program

A program is passive entity stored on disk in
the form of executable file

* An operating system provides means to
execute a program

* e.g., execution of program started via GUT mouse
clicks, command line entry of its name

Process

* A process is a program in execution, as such,
a program is a passive entity while a process
IS an active one

* A program becomes a process when
executable file loaded into memory

* One program can be several processes

« Consider multiple users executing the same
program

Process: Multiple Parts

* A process consists of multiple parts, generally,
 The program code, also called text section

* Current activity including program counter,
processor registers

+ Stack containing tfemporary data

* Function parameters, return addresses, local variables
 Data section containing global variables

* Heap containing memory dynamically allocated during
run time

2/14/2019 CUNY | Brooklyn College

Process in Memory

2/14/2019

max

CUNY | Brooklyn College

0

stack

heap

data

text

Memory Layout of a C Program

high
memory

low
memory

2/14/2019

argc, agrv

heap

uninitialized
data

initialized
data

text

#include <stdio.h>

((

{
]
} I:int s

int x;
int y = 15;

#include <stdlib.h>

int main (int

int *values;

—

|
values = (int *)malloc(sizeof (int) *5) ;
for(i = 0; 1 < 5; i++)

values [1] =

return 0;

CUNY | Brooklyn College

13

Questions?

» Concept of process
* Parts of a process
* Memory layout

Process State

* As a process executes, it changes state
* New: The process is being created
* Running: Instructions are being executed

» Waiting: The process is waiting for some event
to occur

* Ready: The process is waiting to be assigned to
a processor

« Terminated: The process has finished execution

Transition of Process States

admitted interrupt

I/O or event completion scheduMIer Cispatel I/O or event wait

2/14/2019 CUNY | Brooklyn College 11

Process Control Block (PCB)

Information associated with each process (also called task control
block)

* Process state - running, waiting, etc

* Program counter - location of instruction to next execute

* CPU registers - contents of all process-centric registers

 CPU scheduling information- priorities, scheduling queue pointers

« Memory-management information - memory allocated to the process

« Accounting information - CPU used, clock time elapsed since start,
time limits

« I/0 status information - I/0 devices allocated to process, list of
open files

2/14/2019

process state

process number

program counter

registers

memory limits

list of open files

CUNY | Brooklyn College

13

Threads

* So far, a process has a single thread of
execution

« Consider having multiple program counters per
process

 Multiple locations can execute at once
* Multiple threads of control -> threads

* Must then have storage for thread details,
multiple program counters in PCB

* Explore in detail next week

Questions?

» Concept of process state
» Concept of process state transition

» Data structure for managing and
representing process

» Concepts of thread of control/execution and
thread.

Process Representation in Linux

* Represented by the C structure

task struct

pid t pid; /* process identifier */
long state; /* state of the process */
unsigned int time slice /* scheduling information */

struct task struct *parent;/* this process’s parent */
struct list head children; /* this process’s children */
struct files struct *files;/* list of open files */

struct mm struct *mm; /* address space of this process

*/

https://github.com/torvalds/linux/blob/master/include/linux/sched.h#L592
https://github.com/torvalds/linux/blob/master/include/linux/sched.h#L592

Process Representation in Linux:
Task List

/'\ /'\
struct task_struct struct task_struct struct task_struct

process information process information TE process information

® [J []

[} [J ®

o o L]

current
(currently executing proccess)

pid t pid; /* process identifier */
long state; /* state of the process */
unsigned int time slice /* scheduling information */

struct task struct *parent;/* this process’s parent */
struct list head children; /* this process’s children */
struct files struct *files;/* list of open files */

struct mm struct *mm; /* address space of this process
*/

2/14/2019 CUNY | Brooklyn College 17

Questions?

* Process representation in Linux?

Process Scheduling

« Maximize CPU use, quickly switch processes
onto CPU core

* Process scheduler selects among available
processes for next execution on CPU core

* Maintains scheduling queues of processes

+ Ready queue - set of all processes residing in main
memory, ready and waiting to execute

* Wait queues - set of processes waiting for an event
(i.,e. I/0)

* Processes migrate among the various queues

2/14/2019 CUNY | Brooklyn College 19

Ready and Wait Queues

PCB ,

PCB,,

registers

PCB,

queue header PCB ;
ready head >
queue tail N registers
PCB;
/ i
wait head 7
2/14/2019 CUNY | Brooklyn College

20

Representation of Process
Scheduling

|

ready queue

child
terminates

interrupt
occurs

(e
&

2/14/2019

CPU
I/0 wait queue [«—— 1/Orequest D
time.slice
expired
child :
termination [«—— create child Ra—
wait queue PRtk
interrupt wait for an
wait queue interrupt

CUNY | Brooklyn College

21

CPU Switch From Process to
Process

process P, operating system process P,

interrupt or system call

executing \l /—
4 N
save state into PCB,
> idle
reload state from PCB, 1
-idle interrupt or system call executing
[
save state into PCB;
>idle
) reload state from PCB, N
executing '¥
v

2/14/2019 CUNY | Brooklyn College

22

Context Switch

* A context switch occurs when the CPU
switches from one process to another.

Context Switch: What must
Happen?

« When CPU switches to another process, the

system must save the state of the old process
and load the saved state for the new process.

* Context of a process represented in the PCB

 Context-switch time is overhead; the system
does no useful work while switching

« The more complex the OS and the PCB = the longer
the context switch

 Time dependent on hardware support

» Some hardware provides multiple sets of registers per
CPU = multiple contexts loaded at once

Questions?

» Concept of process scheduling
* Concept of context switch

* When must happen during a context switch?

Multitasking in Mobile Systems

« Some mobile systems (e.g., early version of iOS) allow only one
process to run, others suspended

* Due to screen real estate, user interface limits iOS provides for a
« Single foreground process- controlled via user interface

* Multiple background processes- in memory, running, but not on the display, and
with limits

 Limits include single, short task, receiving notification of events, specific long-
running tasks like audio playback

* Android runs foreground and background, with fewer limits
« Background process uses a service to perform tasks
« Service can keep running even if background process is suspended

« Service has no user interface, small memory use

Questions?

* Multitasking in mobile systems?
* Why?

Operations on Processes

» System must provide mechanisms for:
* process creation

* process termination

Process Creation

* Parent process create children processes, which, in turn
create other processes, forming a tree of processes

* Generally, process identified and managed via a process
identifier (pid)

* Resource sharing options
 Parent and children share all resources
« Children share subset of parent's resources
 Parent and child share no resources
« Execution options
 Parent and children execute concurrently

e Parent waits until children terminate

2/14/2019 CUNY | Brooklyn College 29

A Tree of Processes in Linux

systemd
pid =1

sshd
pid = 3028

logind
pid = 8415

python
pid = 2808

bash
pid = 8416

sshd
pid =3610

tcsh
pid = 4005

vim
pid = 9204

ps
pid = 9298

2/14/2019 CUNY | Brooklyn College 30

Process Creation: Design
Consideration

* Physical and logical resources
« CPU time, memory, files, I/0 devices
« Child obtains from the OS

* Child is constrained to a subset of the parent process's
resources

* Program data
* Parent process may pass initialization data to child process
« Address space

* Child duplicate of parent
* Child has a program loaded into it

Process Creation in UNIX

» fork () system call creates new process

» exec () system call used after a fork () to
replace the process’ memory space with a
new program

* Parent process calls wait () for the child
to ferminate

Example Application in Linux

« See the example program

parent (pid > 0)

parent resumes

parent

child (pid = 0)

2/14/2019 CUNY | Brooklyn College 33

https://github.com/CISC7310SP18/SamplePrograms/tree/master/W3_Process/creation

Example Application in Windows

« See the example program

2/14/2019 CUNY | Brooklyn College

34

https://github.com/CISC7310SP18/SamplePrograms/tree/master/W3_Process/creation

Questions?

* Process creation

» Using system calls to create processes

Process Termination

* Processes executes last statement (normal
process termination)

* Parent terminates child process (abort the
child process)

Normal Process Termination

* Process executes last statement and
then asks the operating system to
delete it

* e.g., in UNIX, using the exit () system call.

 Returns status data from child to parent (e.g.,
viawait () in UNIX)

* Process’ resources are deallocated by operating
system

Abort Child Process

* Parent may terminate the execution of
children processes.

* e.g., using the abort () system call

« Some reasons for doing so:
* Child has exceeded allocated resources
 Task assigned to child is no longer required

« The parent is exiting and the operating systems does
not allow a child to continue if its parent terminates

Terminate Children or Wait for
Children?

* Allow child process to exist without the
existence of the parent?

* Allow parent to wait for child to complete?

Terminate All Children

« Some operating systems do not allow child to
exists if its parent has terminated.

 If a process terminates, then all its children
must also be terminated.

« cascading termination. All children,
grandchildren, etc. are terminated.

« The termination is initiated by the operating
system.

Wait for Children

* The parent process may wait for termination
of a child process

* e.g., in UNIX, by using the wait () system call.
The call returns status information and the pid
of the terminated process

pid = wait(&status);

Zombie Process

* A process that has terminated, but whose

parent has not yet called wait(), is known as
a zombie process.

* All processes transition to this state when

they terminate, but generally they exist as
zombies only briefly.

 Once the parent calls wait(), the process
identifier of the zombie process and its
entry in the process table are released.

Orphan Process

* A parent did not invoke wait() and instead
terminated, thereby leaving its child
processes as orphans.

» In UNIX, assigh new parent (initd/systemd)

Questions?

* Process termination?

* Process termination in UNIX?
« Zombie?

* Orphan?

Mobile Systems: Design

Consideration

* Mobile operating systems often have to
terminate processes to reclaim system
resources such as memory.

Android Process Importance
Hierarchy

* In Android, process are ranked from most to
least important:

 Foreground process
« Visible process

« Service process
 Background process
« Empty process

* Android will begin terminating processes that
are least important.

Multiprocess Architecture in
Chrome Browser

« Some Web browsers ran as single process

« If one web site causes trouble, entire browser can hang or
crash

* Google Chrome Browser is multiprocess with 3
different types of processes:

* Browser process manages user interface, disk and network
I/0

* Renderer process renders web pages, deals with HTML,
Javascript. A new renderer created for each website
opened

* Runs in sandbox restricting disk and network I/O, minimizing
effect of security exploits

* Plug-in process for each type of plug-in

New Renderer Created for Each

Website Opened

GCh ome Brows 0S-BOOK.COM X Wl ey: Operating System C X moa BBC - Homepage

C' | @ https://w oogle.com/chrome/bro r/desktop/
‘ chrome DOWNLOAD ~ SET UP ~

Each tab represents a separate process.

2/14/2019 CUNY | Brooklyn College

48

Questions?

» Some design consideration for Android?

» Some design consideration for Web
browsers

