
CISC 7310X

C02c: Application I/O and
OS I/O Subsystem

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

2/7/2019 1CUNY | Brooklyn College

Acknowledgement

• This slides are a revision of the slides by
the authors of the textbook

2/7/2019 CUNY | Brooklyn College 2

Outline

• Application I/O Interface

• Kernel I/O Subsystem

• Transforming I/O Requests to Hardware
Operations

• Performance

2/7/2019 CUNY | Brooklyn College 3

Application I/O Interface
• I/O system calls encapsulate device behaviors in generic classes

• Device-driver layer hides differences among I/O controllers from kernel

• New devices talking already-implemented protocols need no extra work

• Each OS has its own I/O subsystem structures and device driver
frameworks

• Devices vary in many dimensions

• Character-stream or block

• Sequential or random-access

• Synchronous or asynchronous (or both)

• Sharable or dedicated

• Speed of operation

• read-write, read only, or write only

2/7/2019 CUNY | Brooklyn College 4

A Kernel I/O Structure

2/7/2019 CUNY | Brooklyn College 5

Characteristics of I/O Devices

• Need to understand general characteristics to
achieve device independent

• A couple of dimensions

• Size of transfer: Character-stream or block

• Access order: sequential or random access

• Predictability and responsiveness: Synchronous and
asynchronous

• Shared or dedicated

• Speed of operation, e.g., latency, seek time, transfer rate

• Read-write, read only, or write only

2/7/2019 CUNY | Brooklyn College 6

2/7/2019 CUNY | Brooklyn College 7

Types of I/O Devices

• Subtleties of devices handled by device drivers

• Broadly I/O devices can be grouped by the OS into

• Block I/O

• Character I/O (Stream)

• Memory-mapped file access

• Network sockets

• For direct manipulation of I/O device specific
characteristics, usually an escape / back door

• Unix ioctl() call to send arbitrary bits to a device
control register and data to device data register

2/7/2019 CUNY | Brooklyn College 8

Block Devices

• Block devices include disk drives

• Commands include read, write, seek

• Raw I/O, direct I/O, or file-system access

• Memory-mapped file access possible

• File mapped to virtual memory and clusters brought via
demand paging

• DMA

2/7/2019 CUNY | Brooklyn College 9

Block Devices: Examples
• Naming

• Examples on Linux

• by label, by uuid, by id, and by path

• Running examples

• lsblk –f

• ls /dev/disk/

• Read and write a block a time

• Essential behavior

• read(), write()

• For random-access block devices

• seek()

2/7/2019 CUNY | Brooklyn College 10

Character Devices

• Character devices include keyboards, mice,
serial ports

• Read and write a character a time

• Essential behavior

• get(), put()

• Libraries layered on top allow line editing

2/7/2019 CUNY | Brooklyn College 11

Network Devices

• Varying enough from block and
character to have own interface

• Linux, Unix, Windows and many others
include socket interface

• Separates network protocol from
network operation

• Includes select() functionality

• Approaches vary widely (pipes, FIFOs,
streams, queues, mailboxes)

2/7/2019 CUNY | Brooklyn College 12

Clocks and Timers

• Provide current time, elapsed time,
timer

• Normal resolution about 1/60 second

• Some systems provide higher-
resolution timers

• Programmable interval timer used for
timings, periodic interrupts

• ioctl() (on UNIX) covers odd
aspects of I/O such as clocks and
timers

2/7/2019 CUNY | Brooklyn College 13

Nonblocking and Asynchronous
I/O
• Blocking - process suspended until I/O completed

• Easy to use and understand

• Insufficient for some needs

• Nonblocking - I/O call returns as much as available

• User interface, data copy (buffered I/O)

• Implemented via multi-threading

• Returns quickly with count of bytes read or written

• select() to find if data ready then read() or write() to transfer

• Asynchronous - process runs while I/O executes

• Difficult to use

• I/O subsystem signals process when I/O completed

2/7/2019 CUNY | Brooklyn College 14

Two I/O Methos

2/7/2019 CUNY | Brooklyn College 15

Synchronous Asynchronous

Vectored I/O

• Vectored I/O allows one system call to perform
multiple I/O operations

• For example, Unix readve() accepts a vector
of multiple buffers to read into or write from

• This scatter-gather method better than
multiple individual I/O calls

• Decreases context switching and system call
overhead

• Some versions provide atomicity

• Avoid for example worry about multiple threads changing
data as reads / writes occurring

2/7/2019 CUNY | Brooklyn College 16

Questions

• Characteristics of I/O devices

• Types of I/O devices

2/7/2019 CUNY | Brooklyn College 17

Kernel I/O Subsystem:
Scheduling
• Scheduling

• Some I/O request ordering via per-device queue

• Some OSs try fairness

• Some implement Quality Of Service (i.e. IPQOS)

2/7/2019 CUNY | Brooklyn College 18

Kernel I/O Subsystem:
Buffering
• Buffering - store data in memory while

transferring between devices

• To cope with device speed mismatch

• To cope with device transfer size mismatch

• To maintain “copy semantics”

• Double buffering – two copies of the data

• Kernel and user

• Varying sizes

• Full / being processed and not-full / being used

• Copy-on-write can be used for efficiency in some cases

2/7/2019 CUNY | Brooklyn College 19

Device Status Table

2/7/2019 CUNY | Brooklyn College 20

Sun Enterprise 6000 Device-
Transfer Rates

2/7/2019 CUNY | Brooklyn College 21

Kernel I/O Subsystem

• Caching - faster device holding copy of data

• Always just a copy

• Key to performance

• Sometimes combined with buffering

• Spooling - hold output for a device

• If device can serve only one request at a time

• i.e., Printing

• Device reservation - provides exclusive access to a
device

• System calls for allocation and de-allocation

• Watch out for deadlock

2/7/2019 CUNY | Brooklyn College 22

Error Handling

• OS can recover from disk read, device
unavailable, transient write failures

• Retry a read or write, for example

• Some systems more advanced – Solaris FMA, AIX

• Track error frequencies, stop using device with increasing
frequency of retry-able errors

• Most return an error number or code when I/O
request fails

• System error logs hold problem reports

2/7/2019 CUNY | Brooklyn College 23

Questions?

• Some considerations of kernel I/O design

2/7/2019 CUNY | Brooklyn College 24

I/O Protection

• User process may accidentally or
purposefully attempt to disrupt normal
operation via illegal I/O instructions

• All I/O instructions defined to be privileged

• I/O must be performed via system calls

• Memory-mapped and I/O port memory locations must
be protected too

2/7/2019 CUNY | Brooklyn College 25

Use of a System Call to Perform
I/O

2/7/2019 CUNY | Brooklyn College 26

Questions?

• Design for I/O protection

2/7/2019 CUNY | Brooklyn College 27

Kernel Data Structures for I/O

• Kernel keeps state info for I/O components, including
open file tables, network connections, character device
state

• Many, many complex data structures to track buffers,
memory allocation, “dirty” blocks

• Some use object-oriented methods and message passing
to implement I/O

• Windows uses message passing

• Message with I/O information passed from user mode into kernel

• Message modified as it flows through to device driver and back to
process

• Pros / cons?

2/7/2019 CUNY | Brooklyn College 28

UNIX I/O Kernel Structure

2/7/2019 CUNY | Brooklyn College 29

Questions?

• Kernel data structures for I/O

2/7/2019 CUNY | Brooklyn College 30

Power Management

• Not strictly domain of I/O, but much is I/O
related

• Computers and devices use electricity, generate
heat, frequently require cooling

• OSes can help manage and improve use

• Cloud computing environments move virtual machines
between servers

• Can end up evacuating whole systems and shutting them
down

• Mobile computing has power management as
first class OS aspect

2/7/2019 CUNY | Brooklyn College 31

Power Management: Examples

• For example, Android implements

• Component-level power management

• Understands relationship between components

• Build device tree representing physical device topology

• System bus -> I/O subsystem -> {flash, USB storage}

• Device driver tracks state of device, whether in use

• Unused component – turn it off

• All devices in tree branch unused – turn off branch

• Wake locks – like other locks but prevent sleep of device when lock is held

• Power collapse – put a device into very deep sleep

• Marginal power use

• Only awake enough to respond to external stimuli (button press, incoming call)

2/7/2019 CUNY | Brooklyn College 32

Questions?

• I/O and power management?

2/7/2019 CUNY | Brooklyn College 33

Life Cycle of An I/O Request

• Consider reading a file from disk for a
process:

• Determine device holding file

• Translate name to device representation

• Physically read data from disk into buffer

• Make data available to requesting process

• Return control to process

2/7/2019 CUNY | Brooklyn College 34

2/7/2019 CUNY | Brooklyn College 35

Questions?

• I/O request operation from beginning to end
(life cycle)?

2/7/2019 CUNY | Brooklyn College 36

I/O and Performance

• I/O a major factor in system performance:

• Demands CPU to execute device driver, kernel
I/O code

• Context switches due to interrupts

• Data copying

• Network traffic especially stressful

2/7/2019 CUNY | Brooklyn College 37

Intercomputer
Communications

2/7/2019 CUNY | Brooklyn College 38

Improving Performance

• Reduce number of context switches

• Reduce data copying

• Reduce interrupts by using large transfers, smart
controllers, polling

• Use DMA

• Use smarter hardware devices

• Balance CPU, memory, bus, and I/O performance for
highest throughput

• Move user-mode processes / daemons to kernel
threads

2/7/2019 CUNY | Brooklyn College 39

Device-Functionality
Progression

2/7/2019 CUNY | Brooklyn College 40

Design Consideration: Access
Right
• A design consideration

• What kind of access right should we give to
device drivers?

• Unrestricted

• Kernel mode

• Relatively easier to design, can affect the others

• Restricted

• User mode

• More difficult to design, isolated from the others

2/7/2019 CUNY | Brooklyn College 41

Design Consideration: Load
Device Drivers
• Relink the kernel with the new deriver

• Require reboot

• Add to the kernel an entry indicating a new
driver is needed

• Load the driver during reboot

• Install and run the device driver on the fly

• Hot-pluggable

2/7/2019 CUNY | Brooklyn College 42

Questions?

• System performance and I/O

• Device-function progression

• Access right

2/7/2019 CUNY | Brooklyn College 43

