
CISC 7310X

C12: Files and Directories:
User’s Perspective

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

4/19/2018 1CUNY | Brooklyn College

Design File Systems

• User’s perspective

• System’s perspective

4/19/2018 CUNY | Brooklyn College 2

File Systems: Requirements

• Long term data storage

1. It must be possible to store a very large
amount of data.

2. Data must survive termination of process using
it.

3. Multiple processes must be able to access data
concurrently.

4/19/2018 CUNY | Brooklyn College 3

Common Queries

1. How do you find information?

2. How do you keep one user from reading
another user’s data?

3. How do you know which blocks are free?

4/19/2018 CUNY | Brooklyn College 4

Storage Devices: Disks

• Long-term storage devices are abstracted as “disks”

• A disk is abstracted as a linear sequence of fix-sized blocks

• Two operations

• Read block k

• Write block k

4/19/2018 CUNY | Brooklyn College 5

Data structure & algorithms
Sequence of blocks

Files & directories

User’s Perspective

• Files

• Concept

• File naming, structure, types, access, attributes,
operations

• Programming interfaces

• Directories

• Hierarchical directory systems

• Path names

• Directory operations

4/19/2018 CUNY | Brooklyn College 6

File: Concept

• Abstraction mechanism

• Logical units of data created by processes

• Smallest allotment of logical secondary storage

• Data stored in those units can be read it back later

• Where and how the data are stored are abstracted away

• A unit is identified with a “name”

4/19/2018 CUNY | Brooklyn College 7

name
File
data

Characterizing Files

• Information in a file is defined by its
creator

• A few dimensions to characterize files

• Regular files & directories

• Regular file

• File names, and file name extensions (file names)

• Structures of file content

• Formatted/unformatted (binary or text) file

4/19/2018 CUNY | Brooklyn College 8

Regular Files and Directories

• Many OSes support a few types of files

• Regular files: user data

• Directories: contains data about the structure
of the file system

4/19/2018 CUNY | Brooklyn College 9

File Naming

• System dependent

• Characters allowed?

• Length of filenames?

• Case sensitive or insensitive?

• e.g., Windows is case insensitive; while Unix isn’t

• Multi-part filenames?

• Most support two-part filenames

• Second part is file extension

• Some OSes or applications enforces it (Windows, C & Java
compilers), some do not (Unix)

4/19/2018 CUNY | Brooklyn College 10

File Extension: Examples

4/19/2018 CUNY | Brooklyn College 11

• [Figure 4-1 in Tanenbaum & Bos, 2014]

File Structure

• Byte sequence, record sequence, or tree

4/19/2018 CUNY | Brooklyn College 12

• [Figure 4-2 in Tanenbaum & Bos, 2014]

Byte, Record, and Tree

• Byte sequence

• Read and write a byte; maximal flexibility

• Record sequence

• Read and write a record

• Tree

• A tree of records, each has a key field, allowing
efficient searching

4/19/2018 CUNY | Brooklyn College 13

Regular Files

• Character/text files

• Binary files

4/19/2018 CUNY | Brooklyn College 14

Binary File: Example

4/19/2018 CUNY | Brooklyn College 15

• (a) executable (b) an archive [Figure 4-2 in Tanenbaum & Bos, 2014]

File Access

• Sequential access

• Random-access

• Essential for many applications, such as, a
database system

4/19/2018 CUNY | Brooklyn College 16

Sequential Access

• Generally, provides

• Read, write, and rewind

4/19/2018 CUNY | Brooklyn College 17

Random Access File

• Generally, provides

• Length

• the size of the file

• File pointer/Cursor

• an index into the implied array, pointing to the byte next read
reads from or next write writes to.

• Each read or write results an advancement of the pointer

• The file pointer can be obtained

• Seek:

• Set the file pointer

• Generally, unformatted files (binary files)

4/9/2018 CUNY | Brooklyn College 18

File Attributes

• An OS associates additional information
about a file

• Example: the data and time the file was last
modified, and the size of the file

• Attributes or metadata

4/19/2018 CUNY | Brooklyn College 19

File Attributes: Examples

4/19/2018 CUNY | Brooklyn College 20

• [Figure 4-4 in Tanenbaum & Bos, 2014]

File Operations

• Create

• Delete

• Open

• Close

• Read

• Write

• Append

• Seek

• Get attributes

• Set attributes

• Rename

• Lock

4/19/2018 CUNY | Brooklyn College 21

Lock

• Some OSes provides facilities for locking an open file (or
sections of a file).

• File locks

• A process locks a file and prevents other processes from
gaining access to it

• Some OSes provides one, some, or all:

• Shared lock (reader lock): several processes can acquire the
lock concurrently (for reading)

• Exclusive lock (writer lock): only one process at a time can
acquire such a lock

• Mandatory (e.g., Windows) or advisory (e.g., Unix)

4/19/2018 CUNY | Brooklyn College 22

Questions?

• Concept

• File naming, structure, types, access,
attributes, operations

• Programming interfaces

4/19/2018 CUNY | Brooklyn College 23

Directories

• Directories or folders are files whose data
are about regular files and organizations

• Most OSes use hierarchical directory
systems

4/19/2018 CUNY | Brooklyn College 24

Hierarchical Directory System

4/19/2018 CUNY | Brooklyn College 25

• Root directory

• Node

• User directory

• File

• [Figure 4-7 in Tanenbaum & Bos, 2014]

Path Names

• A path name of a file (or directory) is a
traversal of the file system tree or the
directory tree to the file (or directory)

• Any traversal is a valid path name

• Absolute path

• Relative path

4/19/2018 CUNY | Brooklyn College 26

Directory Tree

4/19/2018 CUNY | Brooklyn College 27

• File system tree

• Starting at the root

• A subtree

• Directory tree

• [Figure 4-7 in Tanenbaum & Bos, 2014]

Path Name: Examples

• File system tree traversal

• Example: identify Hw1.txt

• OS X

• /home/alice/Hw1.txt

• Windows

• C:\home\alice\Hw1.txt

• Delimiter

• Windows: “\”

• Unix-like: “/”

4/9/2018 CUNY | Brooklyn College 28

/ (OS X, Linux, Unix)
Or
C:\ (Windows)

home data

alice bob Readme.txt

Hw1.txt

Relative and Absolute Path

• Absolute path

• Contains the root element and the complete directory list required
to locate the file

• Example: /home/alice/Hw1.txt or C:\home\alice\Hw1.txt

• Relative path

• Needs to be combined with another path in order to access a file.

• Example

• alice/Hw1.txt or alice\Hw1.txt, without knowing where alice is, a program
cannot locate the file

• “.” is the path representing the current working directory

• “..” is the path representing the parent of the current working
directory

4/9/2018 CUNY | Brooklyn College 29

Symbolic Link and Hard Link

• A file-system object (source) that points to another
file system object (target).

• Symbolic link (soft link): an “alias” to a file or directory
name

• Hard link: another name of a file or directory

4/9/2018 CUNY | Brooklyn College 30

File or Directory
Content on Disk (e.g.,

inode in Linux)

File or Directory
Name

Hard Link
Symbolic Link (or

Soft Link)

Transparency to Users

• Links are transparent to users

• The links appear as normal files or directories,
and can be acted upon by the user or application
in exactly the same manner.

• Create symbolic links from the Command
Line

• Unix-like: ln

• Windows: mklink

4/9/2018 CUNY | Brooklyn College 31

Unix-like OS: Example

• Unix-like (e.g., Linux, OS X): “#” leads a comment. do the following on the terminal,

• echo “hello, world!” > hello.txt # create a file, the content is “hello, world!”

• ln -s hello.txt hello_symlink.txt # create a soft link to hello.txt

• ls -l hello_symlink.txt # list the file, what do we observe?

• cat hello_symlink.txt # show the content using the symbolic link, what do we observe?

• ln hello.txt hello_hardlink.txt # create a hard link

• ln -l hello_hardlink.txt # observation?

• cat hello_hardlink.txt # observation?

• mv hello.txt hello2.txt # rename hello.txt

• ls -l hello_symlink.txt # observation?

• ln -l hello_hardlink.txt # observation?

• cat hello_symlink.txt # observation?

• cat hello_hardlink.txt # observation

4/9/2018 CUNY | Brooklyn College 32

Window: Example

• On Windows, it requires elevated privilege to create file symbolic link. Do not type the
explanation in “()”.

• echo “hello, world!” > hello.txt (create a file, the content is “hello, world!”)

• mklink hello_symlink.txt hello.txt (create a soft link to hello.txt)

• dir hello_symlink.txt (list the file, what do we observe?)

• more hello_symlink.txt (show the content using the symbolic link, what do we observe?)

• mklink /h hello_hardlink.txt hello.txt (create a hard link to hello.txt)

• dir hello_hardlink.txt (observation?)

• more hello_hardlink.txt (observation?)

• move hello.txt hello2.txt (rename hello.txt)

• dir hello_symlink.txt (observation?)

• dir hello_hardlink.txt (observation?)

• more hello_symlink.txt (observation?)

• more hello_hardlink.txt (observation?)

4/9/2018 CUNY | Brooklyn College 33

Directory Operations

• Create

• Delete

• Opendir

• Closedir

• Readdir

• Rename

• Link

• Unlink

4/19/2018 CUNY | Brooklyn College 34

Questions

• Hierarchical directory systems

• Path names

• Directory operations

4/19/2018 CUNY | Brooklyn College 35

Mounting

• A file system must be “mounted” before it can be
available to processes

• A directory structure may be built from multiple volumes
(multiple file system instances)

• Mounting procedure

• Device (where the file system resides)

• Mount point (the location within the file structure where the
file system is to be attached)

• (optionally) file system type

• Mounting may be explicit (upon request from a user) or
implicit (automatically and via discovery)

4/19/2018 CUNY | Brooklyn College 36

Protection

• Reliability

• Keep files safe from physical damage

• Via redundancy

• Access control

4/19/2018 CUNY | Brooklyn College 37

Types of Access

• OSes provide controlled access by limiting
the types of file access that can be made

• Read

• Write

• Execute

• Append

• Delete

• List

4/19/2018 CUNY | Brooklyn College 38

Access Control

• Common approaches are identify-based
approaches

• Users is assigned an identify, a data structure in
the OS

• Many security models have been examined

4/19/2018 CUNY | Brooklyn College 39

Common Concepts

• Classification of users

• Owner

• Group

• Universe

• Access control list

• Examples: Windows and Unix

• Windows: access-control list

• Unix: permissions

4/19/2018 CUNY | Brooklyn College 40

Questions

• A few concepts of file system mounting

• A few concepts about protection and access
control

4/19/2018 CUNY | Brooklyn College 41

File I/O: API

• System calls

• Unix APIs

• Windows APIs

• Java APIs

4/19/2018 CUNY | Brooklyn College 42

Java I/O Streams

• Sequential access of files

4/19/2018 CUNY | Brooklyn College 43

Java I/O Streams

• Sequential access of regular files

• A stream is a sequence of data associated with an input source or an
output destination.

• Input source or output destination

• Files, network end point, standard I/O, memory array, programs

• A program uses an input stream to read data from a source, one item at a time

• A program uses an output stream to write data to a destination, one item at
time

• In java.io package, since JDK 1.0

4/9/2018 CUNY | Brooklyn College 44

Source or
destination Programdata data data data……

https://docs.oracle.com/javase/8/docs/api/java/io/package-summary.html

Java Block-based I/O

• Java Channel interface provides block-based
I/O

• Read, write fixed blocks

• Channel in java.nio package, since JDK 1.4

4/23/2018 CUNY | Brooklyn College 45

https://docs.oracle.com/javase/8/docs/api/java/nio/channels/Channel.html
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/package-summary.html

Asynchronous I/O in Java

• AsynchronousChannel interface

• AsynchronousChannel in java.nio package, since
JDK 1.7

• Often referred to as a part of Java NIO.2

4/23/2018 CUNY | Brooklyn College 46

https://docs.oracle.com/javase/8/docs/api/java/nio/channels/AsynchronousChannel.html
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/package-summary.html

Examples

• A few example programs

4/19/2018 CUNY | Brooklyn College 47

Questions

• File system APIs

• Examples in Java and JVM

4/19/2018 CUNY | Brooklyn College 48

Assignment

• Project 3

4/19/2018 CUNY | Brooklyn College 49

