
CISC 7310X

C10: Deadlocks
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

4/12/2018 1CUNY | Brooklyn College

Outline

• Concept of deadlock

• Necessary conditions

• Models of deadlocks

• Resource allocation graph

• Matrix-based model

• Deadlock detection and recovery

• Deadlock avoidance

• Deadlock prevention

• Resource deadlocks and communication deadlocks

• Livelock and starvation

4/12/2018 CUNY | Brooklyn College 2

Problem when Sharing
Resources
• A proposed legislature in the history

• “When two trains approach each other at a crossing, both
shall come to a full stop and neither shall start up again
until the other has gone.”

4/12/2018 CUNY | Brooklyn College 3

Deadlock

• Multiple processes share resources

• Two or more waiting processes request the
same resources, and can not change state

4/12/2018 CUNY | Brooklyn College 4

System Model

• N resources distributed among M Processes

• Non-preemptable resources

• Request the resource

• Use the resource

• Release the resource

• Deadlock

• Every process in the set is waiting for an event to be
triggered by another in the set (request or release
resource)

4/12/2018 CUNY | Brooklyn College 5

Deadlock: Example

• Example

• 2 processes, P1 and P2 share two 2 CD-RW
drives (D1, D2)

• P1 is using D1, P2 is using D2

• P1 requests D2 before releasing D1; P2 requests
D1 before releasing D2

• We must be careful when designing multi-
threaded/multi-processed applications

4/12/2018 CUNY | Brooklyn College 6

Resource with Semaphore or
Mutex

• Access non-preemptive resource with
semaphore (request, use, release)

4/12/2018 CUNY | Brooklyn College 7

• [Figure 6-1 in Tanenbaum & Bos, 2014]

Sharing Resources

• Deadlock free and deadlock

4/12/2018 CUNY | Brooklyn College 8

• [Figure 6-2 in Tanenbaum & Bos, 2014]

Remarks

• In previous example (Figure 6-2 (b)),
whether the deadlock happens or not
depends on the result of a race

• Difficult to debug because it only happens
sporadically

• Difference between deadlock free and
deadlocked code is subtle in coding style

4/12/2018 CUNY | Brooklyn College 9

Deadlock: Formal Definition

• A set of processes are deadlocked if

• each process in the set waiting for an event

• and that event can be caused only by another
process

4/12/2018 CUNY | Brooklyn College 10

Necessary Conditions

• A deadlock can arise if the following 4
conditions hold simultaneously in a system
(Coffman et al., 1971)

1. Mutual exclusion

2. Hold-and-wait

3. No preemption

4. Circular wait

4/12/2018 CUNY | Brooklyn College 11

Mutual Exclusion

• A shared resource must be shared in a
mutual exclusive fashion, i.e.,

• A resource is either currently assigned to
exactly one process or is available

4/12/2018 CUNY | Brooklyn College 12

Hold-and-Wait

• Process holding a resource is allowed to wait
for another, i.e.,

• Process currently holding resources that
were granted earlier can request new
resources

4/12/2018 CUNY | Brooklyn College 13

No Preemption

• One process cannot preemptively take a
resource from another process, i.e.,

• Resources previously granted cannot be
forcibly taken away from a process, and
they must be explicitly released by the
process holding them.

4/12/2018 CUNY | Brooklyn College 14

Circular Wait

• There must be a circular list of two or more
processes, each of which is wait for a
resource held by another process in the list,
e.g.,

• {P1, P2, P3}: P1 is waiting for P2 (to release a
resource), P2 is waiting for P3, and P3 is
waiting for P1.

4/12/2018 CUNY | Brooklyn College 15

Modeling Deadlocks

• Resource allocation graph (Holt, 1972)

4/12/2018 CUNY | Brooklyn College 16

Resource-Allocation Graph

• Circle: process; Square: resource; arrow: (Resource  Process,
Process  Resource, i.e., is being held/assigned to or requests)

4/12/2018 CUNY | Brooklyn College 17

• Resource allocation graphs. (a) Holding a resource. (b) Requesting a
resource. (c) Deadlock. [Figure 6-3 in Tanenbaum & Bos, 2014]

Resource-Allocation Graph
Modeling: Example

• Three processes: A, B, C

• Three resources: R, S, T

4/12/2018 CUNY | Brooklyn College 18

Schedule with Deadlock

4/12/2018 CUNY | Brooklyn College 19

Schedule without Deadlock

4/12/2018 CUNY | Brooklyn College 20

Deadlock Handling Strategies

1. The Ostrich Algorithm. Ignore the
problem, maybe it will go away.

2. Detection and recovery. Let deadlocks
occur, detect them, and take action.

3. Dynamic avoidance. Carefully allocate
resources.

4. Prevention. By structurally negate one of
the four required conditions.

4/12/2018 CUNY | Brooklyn College 21

The Ostrich Algorithm

4/12/2018 CUNY | Brooklyn College 22

The deadlock regarding the
resources in my system

happens once in a blue moon …

Detection and Recovery

• One resource of each type

• Several instances of a resource type

4/12/2018 CUNY | Brooklyn College 23

One Resource of Each type:
Example
Example of a system: is it deadlocked?

1. Process A holds R, wants S

2. Process B holds nothing, wants T

3. Process C holds nothing, wants S

4. Process D holds U, wants S and T

5. Process E holds T, wants V

6. Process F holds W, wants S

7. Process G holds V, wants U

4/12/2018 CUNY | Brooklyn College 24

Resource Allocation Graph

4/12/2018 CUNY | Brooklyn College 25

• [Figure 6-5 in Tanenbaum & Bos, 2014]

Detecting Cycle in Resource
Allocation Graph

• For each node in the graph

• Do a depth first search, check if cycle exists

• Complexity of the algorithm: O(N2)

4/12/2018 CUNY | Brooklyn College 26

Several Instances of a Resource

• Detection algorithm: n processes, m types of
resources. Data structures:

• E: Existing Resources. A vector length of m indicates total
number of resources of each type of resources in
existence

• A: Available. A vector length of m indicates the number of
available resources of each type

• C: Current Allocation. An n x m matrix defines the number
of resources each type currently allocated to each process

• R: Request. An n x m matrix indicates the current request
of each process.

• Invariance: σ𝑖=1
𝑛 𝐶𝑖𝑗 + 𝐴𝑗 = 𝐸𝑗

4/12/2018 CUNY | Brooklyn College 27

Data Structures

4/12/2018 CUNY | Brooklyn College 28

• [Figure 6-6 in Tanenbaum & Bos, 2014]

Detection Algorithm

• Basic operation: comparing two vectors X and Y

• X  Y holds if and only if Xi  Yi for 1  i  m.

• Each process is initially unmarked

1. Look for unmarked process, Pi , for which the i-th row of R,
Ri  A.

• With available resources, can Pi run to completion?

2. If such a process is found, add the i-th row of C to A, mark
the process, go back to step 1.

• Its resources become available to others when Pi run to completion

3. If no such process exists, algorithm terminates

• Deadlock if there still exists an unmarked process

4/12/2018 CUNY | Brooklyn College 29

Detection Algorithm: Example

• Is there a deadlock?

4/12/2018 CUNY | Brooklyn College 30

• [Figure 6-7 in Tanenbaum & Bos, 2014]

Recovery from Deadlock

• Possible Methods of recovery (though none
are “attractive”):

1. Preemption

2. Rollback

3. Killing processes

4/12/2018 CUNY | Brooklyn College 31

Deadlock Avoidance

• Now assume a process requests a resource
at a time.

• Question: can the system decide whether it
is safe (without causing a deadlock) to
granting the resource to the resource upon
the request?

4/12/2018 CUNY | Brooklyn College 32

Deadlock Avoidance: Resource
Trajectory

4/12/2018 CUNY | Brooklyn College 33

• [Figure 6-8 in Tanenbaum & Bos, 2014]

Safe and Unsafe State

• Safe state

• The system can allocate resources to each process in
some order and still avoid a deadlock

• A safe state is not a deadlocked state

• Unsafe state

• A deadlocked state is an unsafe state

• An unsafe state may not be a deadlock state

• An unsafe state is a state that may lead to a
deadlock

4/12/2018 CUNY | Brooklyn College 34

Safe State: Example

• State consists of vectors & matrices, E, A, C, R

• A resources has 10 instances

• Does exist a scheduling order of processes A, B, C,
and allow all of them to complete?

• The following sequence shows that (a) is safe

4/12/2018 CUNY | Brooklyn College 35

Unsafe State: Example

• A resources has 10 instances

• Does exist a scheduling order of processes A, B, C,
and allow all of them to complete?

• (b) is unsafe: you can run B to completion, but no sufficient
resources for A or C to complete

4/12/2018 CUNY | Brooklyn College 36

Banker’s Algorithm

• Due to Dijkstra (1965)

• Banker’s algorithm for a single resource

• Banker’s algorithm for multiple resources

4/12/2018 CUNY | Brooklyn College 37

Single Resource: Example

• Three resource allocation states:
(a) Safe. (b) Safe. (c) Unsafe.

4/12/2018 CUNY | Brooklyn College 38

Multiple Resources: Example

4/12/2018 CUNY | Brooklyn College 39

Banker’s Algorithm for Multiple
Resources
1. Look for a row, R, whose unmet resource needs

are all smaller than or equal to A. If no such row
exists, system will eventually deadlock.

2. Assume the process of row chosen requests all
resources needed and finishes. Mark that process
as terminated, add its resources to the A vector.

3. Repeat steps 1 and 2 until either all processes are
marked terminated (safe state) or no process is
left whose resource needs can be met (deadlock)

4/12/2018 CUNY | Brooklyn College 40

Deadlock Prevention

• Recall 4 necessary deadlock conditions

• Break one, free of deadlocks

• Mutual exclusion

• Hold and wait

• No Preemption

• Circular wait

4/12/2018 CUNY | Brooklyn College 41

Attacking Mutual Exclusion

• Example

• Make data read-only

• Avoid assigning a resource unless absolutely
necessary

• Try to make sure as few processes possible may
actually claim the resource

4/12/2018 CUNY | Brooklyn College 42

Breaking Hold-and-Wait

• Example

• Require all processes to request all their
resources before starting execution

• Nothing or all, with all then run to completion

• Require a process that is requesting resource to
temporarily release all the resources it currently
holds.

4/12/2018 CUNY | Brooklyn College 43

Attacking Non-Preemption

• Example

• Use disk (assuming the space virtually infinite)

4/12/2018 CUNY | Brooklyn College 44

Breaking Circular Wait

• Order resources numerically, requests must
be made in numerical order

4/12/2018 CUNY | Brooklyn College 45

• [Figure 6-13 in Tanenbaum & Bos, 2014]

Deadlock Prevention: Summary

• Attacking the 4 necessary conditions

4/12/2018 CUNY | Brooklyn College 46

Communication Deadlocks

• Resource sharing is only one source of
deadlocks

4/12/2018 CUNY | Brooklyn College 47

• [Figure 6-15 in Tanenbaum & Bos, 2014]

Livelock

• A process may choose to give up the lock
(resource) it already acquired whenever it
notices it cannot obtain the next lock
(resource) it needs

• The process tries it again at a short delay

• Livelock

• Processes may change states, but no progress is
being made

4/12/2018 CUNY | Brooklyn College 48

Livelock: Example

• Busy-waiting can leads to livelock

4/12/2018 CUNY | Brooklyn College 49

Starvation

• A problem closely related to deadlock and
livelock

• Example

• N processes want to access a shared printer, which
one should get it?

• Policy

• Choose a smallest file to print from the list of requests

• Consider there is a constant stream of processes with
short files, the process with a large file will have to wait
indefinitely (to be starved off the resource)

4/12/2018 CUNY | Brooklyn College 50

Questions

• Concept of deadlock

• 4 necessary deadlock conditions

• How to deal with deadlocks?

• Model: resource allocation graph

• The Ostrich algorithm

• Used most often by most operating systems (e.g., Unix and Windows)

• Discussion thus very important for multithread/multiprocessed application developers

• Deadlock detection and recovery

• Deadlock (dynamic) avoidance

• Deadlock prevention: attacking 4 necessary conditions

• Resources deadlocks and communication deadlocks

• Concepts of livelocks and starvation

4/12/2018 CUNY | Brooklyn College 51

Assignments

• Team

• Individual

4/12/2018 CUNY | Brooklyn College 52

