
CISC 7310X

C09: Process
Synchronization

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

3/29/2018 1CUNY | Brooklyn College

Outline

• Race condition and critical regions

• The bounded buffer problem

• Process coordination

• mutual exclusion

• synchronization

• Examples

3/29/2018 CUNY | Brooklyn College 2

Race Condition

• Process A and B writes to the same slot

3/29/2018 CUNY | Brooklyn College 3

• [Figure 2-21 in Tanenbaum & Bos, 2014]

Mutual Exclusion and Critical
Region

• Mutual exclusion

• Disable allow multiple processes read and write
at the same time to a shared resource

• Critical region (or critical section)

• The part of the program where the shared
memory is accessed.

3/29/2018 CUNY | Brooklyn College 4

Requirements to Avoid Race
Conditions

1. No two processes may be simultaneously
inside their critical regions.

2. No process running outside its critical
region may block other processes.

3. No process should have to wait forever to
enter its critical region.

4. No assumptions may be made about speeds
or the number of CPUs.

3/29/2018 CUNY | Brooklyn College 5

Mutual Exclusion using Critical
Section

3/29/2018 CUNY | Brooklyn College 6

• [Figure 2-22 in Tanenbaum & Bos, 2014]

Mutual Exclusion with Busy
Waiting

• Disable interrupts

• Strict alternation

• Peterson’s solution

• Synchronization hardware

• TSL or XCHG instructions

3/29/2018 CUNY | Brooklyn College 7

Disable Interrupts

• Disable all interrupts just after entering
critical section, and reenable them just before
leaving

• No clock interrupt occur, no switching process before
read and write completes

• Applicable to only single processor single core
system

• Generally, not appropriate to user programs

• Otherwise all user programs must be placed in kernel
mode

3/29/2018 CUNY | Brooklyn College 8

Strict Alternation

• Busy waiting or spin lock

• Can a process be blocked by others while it is in
non-critical section?

3/29/2018 CUNY | Brooklyn College 9

• [Figure 2-23 in Tanenbaum & Bos, 2014]

Peterson’s Algorithm

3/29/2018 CUNY | Brooklyn College 10

• [Figure 2-24 in Tanenbaum & Bos, 2014]

Special instruction

• Instruction with exclusive access to memory
bus

• TSL

• XCHG

3/29/2018 CUNY | Brooklyn College 11

TSL Instruction

• Test-Set-Lock instruction

3/29/2018 CUNY | Brooklyn College 12

• [Figure 2-25 in Tanenbaum & Bos, 2014]

XCHG Instruction

3/29/2018 CUNY | Brooklyn College 13

• [Figure 2-26 in Tanenbaum & Bos, 2014]

Questions

• Busy-waiting solutions?

3/29/2018 CUNY | Brooklyn College 14

Non-Busy-Waiting Locking
Approaches
• Producer-consumer problem with bounded

buffer

• Sleep and wake-up

• Semaphores

• Mutex

• Monitors

• Message Passing

• Barriers

3/29/2018 CUNY | Brooklyn College 15

Priority Inversion Problem

• Busy-waiting, waste CPU cycles

• Priority inversion problem

• Assumptions

• Two processes, H with high priority, L with low priority

• Run H whenever it is in READY state

• Consider sequence

• L enters critical section

• H becomes ready to run (which state is L in?)

• H enters busy-waiting cycle

• L never gets CPU cycle to leave its critical section, H loops forever
in busy-waiting cycle

3/29/2018 CUNY | Brooklyn College 16

Producer-consumer problem

• Consider a bounded circular buffer shared by
two processes

• N slots

• Producer adds item to the buffer, the item occupies
a slot

• Consumer consumes item from the buffer, free a slot

• Counter counts items in the buffer

• counter == 0, empty buffer, consumer must wait

• counter == N, full buffer, producer must wait

3/29/2018 CUNY | Brooklyn College 17

Sleep and Wake-up

• Sleep

• A system call that causes the caller to block
(suspends the calling process, until another
process wakes it up)

• Wakeup

• A system call that wakes up another process

3/29/2018 CUNY | Brooklyn College 18

Producer

3/29/2018 CUNY | Brooklyn College 19

Consumer

3/29/2018 CUNY | Brooklyn College 20

• [Figure 2-27 in Tanenbaum & Bos, 2014]

Can a race occur?

• Depends on checking condition

• Example

• Producer: if (count == N) sleep();

• Consumer: if (counter ==0) sleep();

• How about

• Producer: counter = counter + 1;

• Consumer: counter = counter – 1;

• How many instructions needed to compute the above?

3/29/2018 CUNY | Brooklyn College 21

Semaphores

• A variable with two atomic operations

Down(semaphore *V) {

if (V->value > 0) V->value --;

else if (V->value == 0) { add this process to S->list; Sleep(); // remains in “Down” before waking up }

}

Up (semaphore *V) {

V->value ++;

if (V->list is not empty) { remove a process P from V->list; Wake(P); }

}

• These operations are designed to be atomic with the help of

• Either interrupts (single processor & single core)

• Or TSL or XCHG instruction to implement a spin locks (on multi-processor or multi-core
system)

3/29/2018 CUNY | Brooklyn College 22

Producer-Consumer: Semaphore

• In total, three semaphores, producer uses
two(empty & mutex), and consumer also two (full &
mutex)

• empty: whether buffer is empty, if empty, consumer
should sleep

• full: whether buffer is full, if full, producer should sleep

• mutex: whether other is in critical section, if so, sleep

• empty & full are for synchronization (coordination)

• mutex is for achieving mutual exclusion

3/29/2018 CUNY | Brooklyn College 23

Producer with Two Semaphores

3/29/2018 CUNY | Brooklyn College 24

• [Figure 2-28 in Tanenbaum & Bos, 2014]

Consumer with Two Semaphores

3/29/2018 CUNY | Brooklyn College 25

• [Figure 2-28 in Tanenbaum & Bos, 2014]

Mutexes (Mutex Locks)

• When counting is not needed, we semaphore
can be made simpler

• A semaphore with two states

• Locked (corresponding to down)

• Locked processes are sleeping

• Unlocked (corresponding to up)

• Unlocking a process is to wake up a sleeping process

3/29/2018 CUNY | Brooklyn College 26

Mutex: Implementation

3/29/2018 CUNY | Brooklyn College 27

• [Figure 2-29 in Tanenbaum & Bos, 2014]

Mutex in Pthreads

3/29/2018 CUNY | Brooklyn College 28

• [Figures 2-30, 2-31 in Tanenbaum & Bos, 2014]

Producer-Consumer: PThreads

• A Simple implementation in PThreads

• What would you comment about it? How is it
easy to make mistake?

3/29/2018 CUNY | Brooklyn College 29

PThread: Producer

3/29/2018 CUNY | Brooklyn College 30

• [Figures 2-32 in Tanenbaum & Bos, 2014]

PThread: Consumer

3/29/2018 CUNY | Brooklyn College 31

• [Figures 2-32 in Tanenbaum & Bos, 2014]

PThread: Creating Threads

3/29/2018 CUNY | Brooklyn College 32

• [Figures 2-32 in Tanenbaum & Bos, 2014]

Questions?

• Priority inversion problem

• Producer-consumer problem

• Semaphore

• Mutex lock

• PThread example

3/29/2018 CUNY | Brooklyn College 33

Monitor: Concept

• Semaphore

• In practice, easily use it wrongly

• Timing error

• Monitor: a high-level language construct that
helps achieve mutual exclusion

• Build on top of semaphore

• Ensures that only process at a time is active
within the monitor

3/29/2018 CUNY | Brooklyn College 34

Monitors

• Producer and consumer are mutually
exclusive

3/29/2018 CUNY | Brooklyn College 35

• [Figures 2-33 in Tanenbaum & Bos, 2014]

Monitor: Producer-Consumer

3/29/2018 CUNY | Brooklyn College 36

• [Figures 2-34 in Tanenbaum & Bos, 2014]

Monitor: In Java

• Java realizes monitor using synchronized
methods

3/29/2018 CUNY | Brooklyn College 37

Message Passing

• Monitor does not work well for distributed
systems

• Message passing

• send(destination, &message)

• receive(source, &message)

• Can be blocking

3/29/2018 CUNY | Brooklyn College 38

Message Passing: Producer

3/29/2018 CUNY | Brooklyn College 39

• [Figures 2-36 in Tanenbaum & Bos, 2014]

Message Passing: Consumer

3/29/2018 CUNY | Brooklyn College 40

• [Figures 2-36 in Tanenbaum & Bos, 2014]

Barriers

• A synchronization mechanism

3/29/2018 CUNY | Brooklyn College 41

• [Figures 2-37 in Tanenbaum & Bos, 2014]

Questions

• Message passing and barriers

3/29/2018 CUNY | Brooklyn College 42

Assignment

• Practice assignment

3/29/2018 CUNY | Brooklyn College 43

