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Outline

• Race condition and critical regions

• The bounded buffer problem

• Process coordination

• mutual exclusion

• synchronization

• Examples
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Race Condition

• Process A and B writes to the same slot
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• [Figure 2-21 in Tanenbaum & Bos, 2014]



Mutual Exclusion and Critical 
Region

• Mutual exclusion

• Disable allow multiple processes read and write 
at the same time to a shared resource

• Critical region (or critical section)

• The part of the program where the shared 
memory is accessed. 
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Requirements to Avoid Race 
Conditions

1. No two processes may be simultaneously 
inside their critical regions.

2. No process running outside its critical 
region may block other processes.

3. No process should have to wait forever to 
enter its critical region.

4. No assumptions may be made about speeds 
or the number of CPUs.

3/29/2018 CUNY | Brooklyn College 5



Mutual Exclusion using Critical 
Section
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• [Figure 2-22 in Tanenbaum & Bos, 2014]



Mutual Exclusion with Busy 
Waiting

• Disable interrupts

• Strict alternation

• Peterson’s solution

• Synchronization hardware

• TSL or XCHG instructions
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Disable Interrupts

• Disable all interrupts just after entering 
critical section, and reenable them just before 
leaving

• No clock interrupt occur, no switching process before 
read and write completes

• Applicable to only single processor single core 
system

• Generally, not appropriate to user programs

• Otherwise all user programs must be placed in kernel 
mode

3/29/2018 CUNY | Brooklyn College 8



Strict Alternation

• Busy waiting or spin lock

• Can a process be blocked by others while it is in 
non-critical section?
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• [Figure 2-23 in Tanenbaum & Bos, 2014]



Peterson’s Algorithm
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• [Figure 2-24 in Tanenbaum & Bos, 2014]



Special instruction

• Instruction with exclusive access to memory 
bus

• TSL

• XCHG
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TSL Instruction

• Test-Set-Lock instruction
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• [Figure 2-25 in Tanenbaum & Bos, 2014]



XCHG Instruction
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• [Figure 2-26 in Tanenbaum & Bos, 2014]



Questions

• Busy-waiting solutions?
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Non-Busy-Waiting Locking 
Approaches
• Producer-consumer problem with bounded 

buffer

• Sleep and wake-up

• Semaphores

• Mutex

• Monitors

• Message Passing

• Barriers
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Priority Inversion Problem

• Busy-waiting, waste CPU cycles

• Priority inversion problem

• Assumptions 

• Two processes, H with high priority, L with low priority

• Run H whenever it is in READY state

• Consider sequence 

• L enters critical section

• H becomes ready to run (which state is L in?)

• H enters busy-waiting cycle

• L never gets CPU cycle to leave its critical section, H loops forever 
in busy-waiting cycle
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Producer-consumer problem

• Consider a bounded circular buffer shared by 
two processes

• N slots

• Producer adds item to the buffer, the item occupies 
a slot

• Consumer consumes item from the buffer, free a slot

• Counter counts items in the buffer

• counter == 0, empty buffer, consumer must wait

• counter == N, full buffer, producer must wait
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Sleep and Wake-up

• Sleep

• A system call that causes the caller to block 
(suspends the calling process, until another 
process wakes it up)

• Wakeup

• A system call that wakes up another process
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Producer
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Consumer

3/29/2018 CUNY | Brooklyn College 20

• [Figure 2-27 in Tanenbaum & Bos, 2014]



Can a race occur? 

• Depends on checking condition

• Example

• Producer: if (count == N) sleep();

• Consumer: if (counter ==0) sleep();

• How about

• Producer: counter = counter + 1;

• Consumer: counter = counter – 1;

• How many instructions needed to compute the above?
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Semaphores

• A variable with two atomic operations

Down( semaphore *V) {

if (V->value > 0) V->value --;

else if (V->value == 0) { add this process to S->list; Sleep(); // remains in “Down” before waking up }

}

Up (semaphore *V) {

V->value ++;

if (V->list is not empty) { remove a process P from V->list; Wake(P); }

}

• These operations are designed to be atomic with the help of 

• Either interrupts (single processor & single core)

• Or TSL or XCHG instruction to implement a spin locks (on multi-processor or multi-core 
system)
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Producer-Consumer: Semaphore

• In total, three semaphores, producer uses 
two(empty & mutex), and consumer also two (full & 
mutex) 

• empty: whether buffer is empty, if empty, consumer 
should sleep

• full: whether buffer is full, if full, producer should sleep

• mutex: whether other is in critical section, if so, sleep

• empty & full are for synchronization (coordination)

• mutex is for achieving mutual exclusion
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Producer with Two Semaphores
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• [Figure 2-28 in Tanenbaum & Bos, 2014]



Consumer with Two Semaphores
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• [Figure 2-28 in Tanenbaum & Bos, 2014]



Mutexes (Mutex Locks)

• When counting is not needed, we semaphore 
can be made simpler

• A semaphore with two states 

• Locked (corresponding to down)

• Locked processes are sleeping

• Unlocked (corresponding to up)

• Unlocking a process is to wake up a sleeping process 
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Mutex: Implementation
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• [Figure 2-29 in Tanenbaum & Bos, 2014]



Mutex in Pthreads

3/29/2018 CUNY | Brooklyn College 28

• [Figures 2-30, 2-31 in Tanenbaum & Bos, 2014]



Producer-Consumer: PThreads

• A Simple implementation in PThreads

• What would you comment about it? How is it 
easy to make mistake? 
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PThread: Producer
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• [Figures 2-32 in Tanenbaum & Bos, 2014]



PThread: Consumer
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• [Figures 2-32 in Tanenbaum & Bos, 2014]



PThread: Creating Threads
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• [Figures 2-32 in Tanenbaum & Bos, 2014]



Questions?

• Priority inversion problem

• Producer-consumer problem

• Semaphore

• Mutex lock

• PThread example
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Monitor: Concept

• Semaphore

• In practice, easily use it wrongly

• Timing error

• Monitor: a high-level language construct that 
helps achieve mutual exclusion

• Build on top of semaphore

• Ensures that only process at a time is active 
within the monitor
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Monitors

• Producer and consumer are mutually 
exclusive
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• [Figures 2-33 in Tanenbaum & Bos, 2014]



Monitor: Producer-Consumer
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• [Figures 2-34 in Tanenbaum & Bos, 2014]



Monitor: In Java

• Java realizes monitor using synchronized 
methods

3/29/2018 CUNY | Brooklyn College 37



Message Passing

• Monitor does not work well for distributed 
systems

• Message passing

• send(destination, &message)

• receive(source, &message)

• Can be blocking
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Message Passing: Producer
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• [Figures 2-36 in Tanenbaum & Bos, 2014]



Message Passing: Consumer
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• [Figures 2-36 in Tanenbaum & Bos, 2014]



Barriers

• A synchronization mechanism
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• [Figures 2-37 in Tanenbaum & Bos, 2014]



Questions

• Message passing and barriers
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Assignment

• Practice assignment
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