
CISC 7310X

C08: Virtual Memory
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

3/22/2018 1CUNY | Brooklyn College

Outline

• Concepts of virtual address space, paging, virtual
page, page frames

• Design of virtual memory system for efficiency

• Concept of page table

• Speeding-up page table

• TLB

• Large virtual address space

• Multilevel page tables

• Inverted page tables

• Page replacement algorithms

3/22/2018 CUNY | Brooklyn College 2

Virtual Memory

• Two problems

• A program may become too large to fit in memory

• Collectively in a multiprogramming system, the programs
exceed memory although each fits.

• Virtual Memory

• Address space

• each program has its own address space

• Paging

• The address space broken up into chunks called pages, each is a
contiguous range of addresses

• Pages are mapped onto physical memory, but not all at the same time

3/22/2018 CUNY | Brooklyn College 3

Virtual Address

• Programs access data referencing memory with
virtual address

• Example

• MOV REG, 1000

• What happens in today’s computer systems?

• Virtual address is passed to a Memory Management
Unit (MMU)

• MMU maps the virtual address onto the physical
memory

3/22/2018 CUNY | Brooklyn College 4

Virtual Address to Physical
Address

3/22/2018 CUNY | Brooklyn College 5

• [Figure 3-8 in Tanenbaum & Bos, 2014]

Example: Virtual Address

• Virtual address

• 16-bit address

• Address space

• 0 ~ (216 – 1 = 64K - 1)

• Divided into pages, each 4KB

• 32 KB physical memory

• Page frames: pages in the physical
memory

• 64 KB virtual space: 16 x 4 = 64, so 16
virtual pages

• 32 KB physical memory: 8 x 4 = 32, so
8 page frames

• Transfer between memory and disk is
always in whole pages

3/22/2018 CUNY | Brooklyn College 6

• [Figure 3-9 in Tanenbaum & Bos, 2014]

Example: Access Virtual
Address
• MMU maintains a map

• Page size: 4K

• What if

• MOV REG, 8203

• 8203 is a virtual address, passed to
MMU (8K = 8192)

• determines that 8203 is in page 2 in
virtual address space

• determines that the page is mapped to
page frame 6 in physical memory

• Maps the virtual address to physical
address

• 8203 / 4K = 2 (table lookup 6)

• 8203 % 4K + 6 * 4K = 24587

3/22/2018 CUNY | Brooklyn College 7

• [Figure 3-9 in Tanenbaum & Bos, 2014]

Example: Page Fault

• MMU maintains a map

• Page size: 4K

• What if

• MOV REG, 56930

• Each entry in the map has a
present/absent bit

• 56930 / 4K = 13

• Absent according to the
present/absent bit

• Causes a page fault, a hardware trap

• OS catches the trap, select a page
frame, write it to the disk, fetch page
13 from disk to the page frame,
update the MMU map

3/22/2018 CUNY | Brooklyn College 8

• [Figure 3-9 in Tanenbaum & Bos, 2014]

Page Size: Power of 2

• Theoretically, page size can be any size

• In practice, page size is always a power of 2

3/22/2018 CUNY | Brooklyn College 9

Virtual page number Offset in virtual page and page frame

Page Number and Address
Offset

3/22/2018 CUNY | Brooklyn College 10

Virtual
page

number

Offset in virtual
page and page

frame

Example: Page Table and Power
of 2 Page Size
• 16 bit virtual address space

• 4 bit page number

• 0xf000

• 12 bit offset in page (4096 = 4K)

• 0x0fff

• Page number = Address & 0xf000

• Page offset = Address & 0x0fff

• Example:

• Page number: 0b0010 = 2

• Page offset: 0b0000 0000 0100

• Page frame number: 0b110 = 6 in the table

• 6 x 4096 = 0b110 << 12

• Physical address: (0b110 << 12) ^ 0b ... 010

3/22/2018 CUNY | Brooklyn College 11

• [Figure 3-10 in Tanenbaum & Bos, 2014]

Design of Page Table

• A data structure an OS must maintain to support virtual memory

• Design page size as power of 2

• Essential fields

• Page frame number, present/absent, protection (e.g., rwx), modified (is
dirty?), referenced (is rwx’ed?), caching disabled (page may be mapped to
cache)

3/22/2018 CUNY | Brooklyn College 12

• [Figure 3-11 in Tanenbaum & Bos, 2014]

Questions?

• Virtual address

• Virtual pages and page frames

• Concept of page table

• Some design issue of page table

• Group discussion and work

• Questions 1 and 2

3/22/2018 CUNY | Brooklyn College 13

Speeding Up Paging

• Two major issues:

• The mapping from virtual address to physical
address must be fast.

• Mapping have to done at every memory reference

• If the virtual address space is large, the page
table will be large.

• 32 bit address pace, 4 KB page, how big is the page
table?

• How many page tables does an OS must maintain?

3/22/2018 CUNY | Brooklyn College 14

Translation Lookaside Buffer

• Speeding up paging implementation

• TLB or associative memory

• Usually a part of MMU

• A table consists of a small number of entries

• Rarely more than 256

• Each entry is about one page

• Virtual page number, Is modified (dirty), protection (e.g.,
rwx) , physical page frame number

• One-to-one correspondence to the fields in the page table

3/22/2018 CUNY | Brooklyn College 15

Example: TLB

• A process may have a TLB as follows,

• Pages 19 – 21 for process code

• Pages 129 – 130 for heap, pages 860 – 861 stack, page 140
others data

3/22/2018 CUNY | Brooklyn College 16

• [Figure 3-12 in Tanenbaum & Bos, 2014]

Example: TLB Functions

1. an address is passed to the MMU for translation

2. MMU compares it to all entries simultaneously
(require hardware support)

3. If found, access is permitted, compute physical
address directly using the TBL entry

4. If found, but access is not permitted, a
protection fault is generated

5. If not found (TLB miss), MMU does an ordinary
page table lookup, replace TLB entry with the one
from the page table

3/22/2018 CUNY | Brooklyn College 17

Design of TLB: Software or
Hardware?
• Hardware solution

• CPU/MMU does TLB management & TLB faults

• Software solution

• Many systems do page management in software

• Hardware only generates TLB and page faults

• OS loads TLB entries explicitly

• OS fetches page table entry and replace missing TLB entry

• Experimental evidences

• When TLB is moderately large, TLB miss rate is acceptable

• Hardware spaces can be used to have more cache

3/22/2018 CUNY | Brooklyn College 18

Design of TLB: TLB Miss

• Page tables is a data structure that OS
maintains

• When a TLB miss occurs, where is the page
table entry to be fetched?

• It could be on a page that isn’t in the page
frames!

• The page’s entry isn’t in the TLB

• Another TLB miss

3/22/2018 CUNY | Brooklyn College 19

TLB Miss and Page Fault

• TLB miss

• Soft miss

• The page referenced is not in the TLB, but in the memory; No disk access required

• Hard miss

• The page referenced is not in the memory at all; Require disk access

• Page fault

• Minor page fault

• Page loaded by other process (indexed in other process’s table table); No disk access

• Major page fault

• Page not in the memory; Require disk access

• Accessed invalid address, segmentation fault

3/22/2018 CUNY | Brooklyn College 20

Page Tables for Large Memories

• Multi-level page tables

• Inverted page tables

3/22/2018 CUNY | Brooklyn College 21

3/22/2018 CUNY | Brooklyn College 22

• [Figure 3-13 in Tanenbaum & Bos, 2014]

• 32-bit virtual address

• 10-bit PT1

• 10-bit PT2

• 12-bit offset

• Only selected branches
are in memory

Multilevel Page Tables: Example

Multilevel Page Tables: Example

• Intel x64 uses 4-levels

• PT1: 9 bits

• PT2: 9 bits

• PT3: 9 bits

• PT4: 9 bits

• Page size: 12 bits

• Virtual address space: 2(9+9+9+9+12) = 248

• How an OS takes advantage of this differ

• See Memory Limits for Windows and Windows Server
Releases

3/22/2018 CUNY | Brooklyn College 23

https://msdn.microsoft.com/en-us/library/windows/desktop/aa366778(v=vs.85).aspx

Inverted Page Tables

• In previous discussion, there is one page table entry for
every virtual page

• In an inverted page table, there is on entry per page
frame in real memory.

• Example:

• a 64-bit virtual address

• 4-KB page size

• 4 GB of RAM

• An inverted page table has table entries

• 4 GB / 4KB = 220 page table entries

• How to do virtual-to-physical address translation?

3/22/2018 CUNY | Brooklyn College 24

Inverted Page Table: Address
Translation

• Must search the inverted page table to
translate a virtual address to a physical address

• Take advantage of TLB

• A search of the inverted table required only when a
TLB miss

• How to make the search more efficient?

• Use additional data structure

• Hash table with virtual address as key

3/22/2018 CUNY | Brooklyn College 25

Inverted Page Tables: Example
Design

3/22/2018 CUNY | Brooklyn College 26

• [Figure 3-14 in Tanenbaum & Bos, 2014]

Questions

• Speeding-up page table via TLB

• Issues in TLB design

• Design of large virtual address spaces

• Multi-level page tables

• Inverted page tables

3/22/2018 CUNY | Brooklyn College 27

Page Replacement

• Page faults occurs

• Reference to a virtual page that is not mapped to a page frame

• Handling page faults

• Select and evict a page frame from memory by saving the page to disk and
update the page table

• Fetch the virtual page from the disk

• Replace the memory space occupied by the evicted page frame, update the
page table

• Question

• Which page frame evict?

• An algorithm that selects page frame to evict is called a page replacement
algorithm

3/22/2018 CUNY | Brooklyn College 28

The Optimal Page Replace
Algorithm
• If we know past and future, we can select page

to evict to reduce page faults to minimum.

• Used as a reference to evaluate page replace
algorithms

• Question?

• Do we allow evict other processes’ page frame or just
our own?

• If we allow evict other processes’ page frame, is it
always fair to minimize page faults? (System-wide
page faults may be minimized, but how about an
individual process?)

3/22/2018 CUNY | Brooklyn College 29

Page Replacement Algorithms

• Optimal algorithm

• Not-recently-used algorithm

• First-in, first-out (FIFO) algorithm

• Second-chance algorithm

• Clock algorithm

• Least recently used (LRU) algorithm

• Working set algorithm

• WSClock algorithm

3/22/2018 CUNY | Brooklyn College 30

Referenced and Modified Bits

• Page table entries contain

• Reference bit: R bit (0 not referenced; 1 otherwise)

• Modified bit: M bit (0 not modified; 1 otherwise)

• OS maintains the R and M bits

• When a process is being created, R & M bits of all pages are
set 0

• Periodically (e.g., on each clock interrupt), the R bit is cleared

• When a page is rewritten to the disk, the M bit is cleared

• When a page is being referenced, the R bit is set.

• When a page is being modified, the M bit is set

3/22/2018 CUNY | Brooklyn College 31

Not-Recently-Used Algorithm

• At page fault, system inspects pages

• Categories of pages based on the current values of their
R and M bits:

• Class 0: not referenced, not modified. (when R bit of page in
case 3 is cleared at a clock interrupt)

• Class 1: not referenced, modified.

• Class 2: referenced, not modified.

• Class 3: referenced, modified.

• NRU selects at random a page in the lowest non-empty
class and replaces the page by the newly fetched one.

3/22/2018 CUNY | Brooklyn College 32

First-in, First-Out (FIFO)
Algorithm

• An OS organizes the page frames in a list

• Most recently fetched at the tail (least recently
fetched at the head)

• On a page fault, evict and replace the page at
the head

3/22/2018 CUNY | Brooklyn College 33

Second-Chance Algorithm

• A simple modification to the FIFO algorithm to avoid throwing
out a heavily used old page

• Inspect the R bit of the oldest page (at the head of the list). If
0, replace the page; if 1, clear the R bit and move the page to tail
of the list.

3/22/2018 CUNY | Brooklyn College 34

• [Figure 3-15 in Tanenbaum & Bos, 2014]

Clock-Page Replacement
Algorithm

• To avoid moving pages in the list, replace the list by
a circular list, i.e., maintains a pointer to the oldest
page.

3/22/2018 CUNY | Brooklyn College 35

• [Figure 3-16 in Tanenbaum & Bos, 2014]

Least Recently Used (LRU)
Algorithm
• Intuition: a heavily used page in the last few

instructions will probably be heavily used again soon.

• At a page fault, evict and place the page that has
not been used for the longest time

• Need an additional list to record the order of
reference

• Require to update the list at every reference

• Contrast to the other algorithms where the list only
need to be updated at every fetch

3/22/2018 CUNY | Brooklyn College 36

LRU Implementation: Hardware
Approach

• Design consideration: the counter approach

• Hardware maintains a long (e.g., 64-bit) counter;

• Page table entry also has the copy of the counter

• Increment the counter at each reference,
update replaced page with the counter

• At page fault, search the page with the lowest
counter (need additional data structure to
support efficient search)

3/22/2018 CUNY | Brooklyn College 37

LRU Implementation: Software

• A software counter associated with each page

• At each clock interrupt, scan each page, and
increment the page’s counter if R bit is set

• At page fault, select the page with the lowest
count for replacement

• Called Least-frequently-used (LFU or NFU)

• Problem

• LFU does not forget.

3/22/2018 CUNY | Brooklyn College 38

LRU Implementation: Aging

• How to forget “ancient” history? There are
many strategies.

• Since memory reference must be resolved
very quickly, it must be simple

3/22/2018 CUNY | Brooklyn College 39

LRU Implementation: Aging: A
Simple Algorithm

• Using shift counter

• Shift counter 1 bit to the right

• Add the value of R bit to the left

3/22/2018 CUNY | Brooklyn College 40

• [Figure 3-16 in Tanenbaum & Bos, 2014]

Paging Implementation Models

• Demand paging model

• Processes are started up with none of their pages in memory

• Page faults, as CPU starts executing a process instruction

• The OS fetches the page

• Working set model

• During any phase of execution, a process references only a relatively
small fraction of its pages

• Working set: the set of pages that a process is currently using

• Keep track of working set, and make sure that it is in memory before
letting the process run

• Pre-paging: loading the pages before letting processes run

3/22/2018 CUNY | Brooklyn College 41

Locality of Reference

• Programs rarely reference their pages uniformly, tend to cluster on a
small number of pages

• The set of pages used in the k most recent memory references

3/22/2018 CUNY | Brooklyn College 42

• [Figure 3-18 in Tanenbaum & Bos, 2014]

Working Set Algorithm

• Maintain a working set; upon a page fault,
evict one that is not in the working set.

• Need to determine k beforehand

• Need efficient implementation

3/22/2018 CUNY | Brooklyn College 43

Working Set Algorithm:
Example Implementation
• Current virtual time: CPU time a process actually used

• At a clock interrupt, scan pages. If R bit set, the current
virtual time is written into the Time of last use field

3/22/2018 CUNY | Brooklyn College 44

• [Figure 3-18 in Tanenbaum & Bos, 2014]

WSClock Page Algorithm

• Scan the entire page table is an expensive
operation

• Based on both the clock algorithm and the
working set algorithm

• Maintains a circular list of page frames as in
the clock algorithm

• Each page has the Time of last use field

3/22/2018 CUNY | Brooklyn College 45

WSClock Algorithm: Scenarios

• If R bit is set, clear the bit, and advance the pointer

3/22/2018 CUNY | Brooklyn College 46

• [Figure 3-20 in Tanenbaum & Bos, 2014]

WSClock Algorithm: Scenarios

• If R bit not set, if old page and M bit not set, replace it ; otherwise,
advance the pointer

3/22/2018 CUNY | Brooklyn College 47

• [Figure 3-20 in Tanenbaum & Bos, 2014]

Summary of Page Replacement
Algorithms

3/22/2018 CUNY | Brooklyn College 48

Questions?

• Various page replacement algorithms

3/22/2018 CUNY | Brooklyn College 49

Design Issues in Paging Systems

• Allocation Policies

• Load control

• Page size

• Separate instruction and data spaces

• Shared pages

• Shared libraries

• Cleaning policy

• Virtual memory interface

3/22/2018 CUNY | Brooklyn College 50

Implementation Issues

• OS involvement with paging

• Process creation, process execution, page fault,
and process termination

• Page fault handling

• Instruction backup

• Locking pages in memory

• Backing store

• Policy and mechanism separation

3/22/2018 CUNY | Brooklyn College 51

Page Fault

• Oops!

3/22/2018 CUNY | Brooklyn College 52

Page Fault Handling

1. The hardware traps to kernel, saving program
counter on stack.

2. Assembly code routine started to save general
registers and other volatile info

3. system discovers page fault has occurred,
tries to discover which virtual page needed

4. Once virtual address caused fault is known,
system checks to see if address valid and the
protection consistent with access

3/22/2018 CUNY | Brooklyn College 53

Page Fault Handling

5. If frame selected dirty, page is scheduled for
transfer to disk, context switch takes place,
suspending faulting process

6. As soon as frame clean, operating system
looks up disk address where needed page is,
schedules disk operation to bring it in.

7. When disk interrupt indicates page has
arrived, tables updated to reflect position,
and frame marked as being in normal state.

3/22/2018 CUNY | Brooklyn College 54

Page Fault Handling

8. Faulting instruction backed up to state it
had when it began and program counter is
reset

9. Faulting process is scheduled, operating
system returns to routine that called it.

10. Routine reloads registers and other state
information, returns to user space to
continue execution

3/22/2018 CUNY | Brooklyn College 55

Questions

• A quick overview of a design and
implementation issues in paging systems

3/22/2018 CUNY | Brooklyn College 56

Assignment

• Practice assignment

3/22/2018 CUNY | Brooklyn College 57

