
CISC 7310X

C06: Memory Management
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

3/8/2018 1CUNY | Brooklyn College



Outline

• Recap & issues

• Project 1 feedback

• Memory management: main memory

• No memory abstraction

• Memory abstraction: address space

• Memory segmentation

• Assignment

3/8/2018 CUNY | Brooklyn College 2



Project 1 Feedback

• Via commenting on git commits at Github

3/8/2018 CUNY | Brooklyn College 3



Questions?

• Project 1?

• Project 2? 

3/8/2018 CUNY | Brooklyn College 4



Memory Hierarchy

2/1/2018 CUNY | Brooklyn College 5

Secondary Memory (e.g., Magnetic Disk)

Main Memory

Cache

Registers

~10ms

~10ns

~2ns

~1ns

~TB

~GB

~MB

<KB



Memory Management

• How does an OS provide an abstraction of 
the memory hierarchy to make it “useful”?

• Main memory

• Virtual memory

• Caching

3/8/2018 CUNY | Brooklyn College 6



Main Memory Management

• Without abstraction

• With abstraction

• Segmentation

3/8/2018 CUNY | Brooklyn College 7



No Abstraction

• Directly address physical memory

• three variations

3/8/2018 CUNY | Brooklyn College 8

• Simple memory organization [Figure 3-1 in Tanenbaum & Bos, 2014]



What would happen if …

• Three variations

int *p = malloc(…)

while (1) {

*p = value;

p ++;

}

3/8/2018 CUNY | Brooklyn College 9

• Simple memory organization [Figure 
3-1 in Tanenbaum & Bos, 2014]



Protection and Parallelism

• When without abstraction,

• How to provide protection: prevent a program 
overwrite another program or the OS?

• How to run multiple programs?

• Need additional hardware for protection

3/8/2018 CUNY | Brooklyn College 10



Example: IBM 360

• Allow access only when PSW key matches 
RAM block key

3/8/2018 CUNY | Brooklyn College 11

1101

2KB Block0000
PSW 2KB Block0001

2KB Block0010

2KB Block0011

KEY

KEY

PWS Key == 
RAM Block Key?

NoYes

Stop ill-behaved 
program



Example: Running Multiple 
Programs

• Naively loading two programs to run 

3/8/2018 CUNY | Brooklyn College 12

• Loading two programs [Figure 3-2 in Tanenbaum & Bos, 2014]



Example: Static Relocation

• OS adds an offset to every address when 
loading

• If the program is to load to 16384, then add 
16380 to every address

• JMP 28  JMP 28 + 16384  JMP 16412

• Needs to know which is an address, which is not

• MOV REGISTER1, 28

• Is “28” an address or a constant? 

3/8/2018 CUNY | Brooklyn College 13



Directly Addressing of Physical 
Memory
• Simple embedded devices

• Examples: radios, washing machines, microwave ovens,  
coffee machines

• A library on ROM loads a program to run and the program 
addresses physical memory without abstraction

• Example: the eCos system (http://ecos.sourceware.org/) 

• “eCos is a single process, multiple thread operating environment. 
As such, memory management is not required. … There is no 
notion of separate address "spaces" in eCos like there would be 
in a system like Linux. All threads share the same address space 
and access capabilities. ”

• https://sourceware.org/viewvc/ecos/

3/8/2018 CUNY | Brooklyn College 14

http://ecos.sourceware.org/
https://sourceware.org/viewvc/ecos/


Questions?

• No abstraction: directly addressing physical 
memory

• How to run multiple programs?

• How to provide protection?

• How to provide relocation (static relocation)?

• Where is it commonly used? 

3/8/2018 CUNY | Brooklyn College 15



Memory Abstraction

• Notion of address space

• Base and limit registers

• Swapping

• Managing free memory

3/8/2018 CUNY | Brooklyn College 16



Address Space

• Two problems

• Protection and relocation

• A logical concept

• A process has its own independent “address space”, a 
set of addresses the process can use to address 
memory

• How do we establish the correspondence between the 
“logical address” and the address of the physical memory?

• Dynamic relocation

3/8/2018 CUNY | Brooklyn College 17



Dynamic Relocation

• Example: using base and limit registers

• Map each process’s address space onto a 
different part of physical memory 

• Processor has two registers

• Base register loaded with beginning physical 
address

• Limit register loaded with length of the 
program

3/8/2018 CUNY | Brooklyn College 18



Base and Limit Registers

• Hardware support, when reference to a 
memory, CPU does the following,

3/8/2018 CUNY | Brooklyn College 19

Base register Address in address space in process

Within length of 
the limit register

Yes No

Fault



Running Multiple Programs

• Base and limit registers 
realize a simple dynamic 
relocation and protection

• Base register: dynamic 
relocation done by CPU

• Limit register: protection 
done by CPU

3/8/2018 CUNY | Brooklyn College 20

• Dynamic relocation via base and limit registers 
[Figure 3-3 in Tanenbaum & Bos, 2014]



Base and Limit Registers: 
Examples

• Implementation vary

• Whether base and limit registers are protected? 
Who can modify these registers?

• CDC 6600 provides protection; Intel 8088 does not

• Whether a processor has different base and 
limit registers to protect for programs 
(instructions) and data, respectively

3/8/2018 CUNY | Brooklyn College 21



Swapping

• A corollary to Parkinson’s law: “Programs 
expands to fill the memory available to hold 
them”

• Running many programs may require more 
memory than is available

• Two solutions

• Swapping

• Virtual memory

3/8/2018 CUNY | Brooklyn College 22



Swapping & Virtual Memory

• Swapping

• Brining in a process in entirety from the “disk”, 
run the process, and putting it back on the “disk”

• Idle processes are mostly stored on disk

• Virtual memory

• Allow a process to run even if it is only partially 
in main memory

• To be discussed next

3/8/2018 CUNY | Brooklyn College 23



Swapping: Example

• Swapping of a few processes

3/8/2018 CUNY | Brooklyn College 24

• Swapping of multiple processes [Figure 3-4 in Tanenbaum & Bos, 2014]



Memory Compaction

• Swapping creates multiple holes in memory

• Sometimes it is necessary to combine 
multiple holes into big one

3/8/2018 CUNY | Brooklyn College 25



Growing Program Data Segment

• In many programming languages, program data can grow in size

• Example: 

• int *a = malloc(…)

• Object o = new Object()

• What if memory hole is not big enough to accommodate the growing 
program data?

• Move process

• Compact memory

• Swap out one or more processes

• Suspend the process until more memory is available

• Killed

3/8/2018 CUNY | Brooklyn College 26



Proactive Approach

• Process growing in size expected, allocate 
extra memory when a process is swapped in 
or moved

• Growing data segment

• Growing stack segment

3/8/2018 CUNY | Brooklyn College 27



Proactive Approach: Examples

• For data segment; and for data & stack 
segments

3/8/2018 CUNY | Brooklyn College 28

• Growing program data [Figure 3-5 in Tanenbaum & Bos, 2014]



Managing Free Memory

• Keep track of memory usage

• Data structures & algorithms

• Bitmaps

• Linked lists

3/8/2018 CUNY | Brooklyn College 29



Bitmaps

• A data structure keep tracks memory allocation

• Specify an allocation unit, have many allocation 
units

• Example: 4 KB

• A bit in a bitmap indicate an allocation unit is 
free or allocated 

• Example

• Free: 1

• Allocated: 0

3/8/2018 CUNY | Brooklyn College 30



Bitmap: Example

• An example allocation and its bitmap

3/8/2018 CUNY | Brooklyn College 31

• Linked list of memory allocation [Figure 3-6 in Tanenbaum & Bos, 2014]



Design of Bitmap

• What should be the size of the allocation unit?

• Two competing factors

• When allocation unit become smaller, bitmap larger

• How big is a bitmap?

• When allocation unit becomes larger, memory waste 
larger

• How much waste is there?

• How about search the bitmap to locate free memory?

3/8/2018 CUNY | Brooklyn College 32



Linked List

• Maintain a linked list of allocated memory 
and free memory segments

3/8/2018 CUNY | Brooklyn College 33

• Linked list of memory allocation [Figure 3-6 in Tanenbaum & Bos, 2014]



Linked List: Example

• Allocation and deallocation scenarios

3/8/2018 CUNY | Brooklyn College 34

• Linked list of memory allocation [Figure 3-7 in Tanenbaum & Bos, 2014]



Design of Linked List

• Single-linked list or double-linked list?

• Separate list of processes or holes?

• A few algorithms

• First fit: starting from beginning

• Next fit: starting from last time

• Best fit: takes the smallest hole

• Worst fit: takes the largest hole

• Quick fit: based on allocation pattern

• Additional data structure?

• Example: Holes can be sorted in size (any data structure for ordered 
list)

3/8/2018 CUNY | Brooklyn College 35



Questions?

• Address space

• Concept?

• Simple mechanism for dynamic allocation and 
protection

• Swapping

3/8/2018 CUNY | Brooklyn College 36



Address Space and Process

• One process one address space?

3/8/2018 CUNY | Brooklyn College 37



Compiled Tables

• A compiler typically builds many tables when 
processing a program

1. The source text being saved for the printed listing 

2. The symbol table, names and attributes of variables.

3. The table containing integer and floating-point constants 
used.

4. The parse tree, syntactic analysis of the program.

5. The stack used for procedure calls within compiler.

• Each of these grows continuously as compilation 
proceeds

3/8/2018 CUNY | Brooklyn College 38



Growing Tables: Example

• One address space for all? 

3/8/2018 CUNY | Brooklyn College 39

• One address space  for all [Figure 3-30 in Tanenbaum & Bos, 2014]



Segmentation

• Provide many completely independent 
address spaces, called segments

• Each segment consists of a linear sequence of 
address

• Different segments can have different lengths

• Segments can grow or shrink independently 
without affection others

3/8/2018 CUNY | Brooklyn College 40



Segmentation: Example

• Segments can grow or shrink independently 
without affection others

3/8/2018 CUNY | Brooklyn College 41

• Multiple segments [Figure 3-31 in Tanenbaum & Bos, 2014]



Questions

• Concept of segmentation

3/8/2018 CUNY | Brooklyn College 42



Assignment

• Practice assignment

• Review Guide #1 and Take-Home Test #1

3/8/2018 CUNY | Brooklyn College 43


