CISC 7310X
CO5: CPU Scheduling

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College

Outline

* Recap & issues
« CPU Scheduling

 Concepts

e Goals and criteria
 Thread
 Multiprocessor

* Project 2 discussion
* Assignment

Recall Process and Modeling of
Multiprogramming

* Scheduler

1.0 — & @ @ @
0.8
Processes <
= 0.61
8
0 1 n—-2|n-1 =
D
. 2 0.4
© o Simulation:l/O Wait=20%
% Simulation:l/O Wait=50%
0.2+ « Simulation:l/O Wait=80%
—— Analytic:l/O Wait=20%
Schedu|er T Analytic:1/0 Wait=50%
oo € == Analytic:1/O Wait=80%
0 2 4 6 8 10 12

Degree of Multiprogramming

» Scheduler and processes [Figure 2- « Modeling of multiprogramming with
3 in Tanenbaum & Bos, 2014] an implicit assumption of a scheduler

Scheduler and Scheduling
Algorithm

 CPU scheduler makes the decision on which
process (or thread) to run next if more than
one process is in the ready state with a
scheduling algorithm

w 1. Process blocks for input
1 3 2 2. Scheduler picks another process
. 3. Scheduler picks this process
Blocked A 4. Input becomes available

* Process states [Figure 2-2 in Tanenbaum & Bos, 2014]

Assumptions?

[]
« I/0, scheduling?
- scheduling:
1.0
0.8
[
(@]
S 0.6
(]
N
E
-]
> 0.4]
2 .
v / © Simulation:l/O Wait=20%
[# Simulation:l/O Wait=50%
0.2 Fi « Simulation:l/O Wait=80%
!/ —— Analytic:l/O Wait=20%
7 Analytic:1/O Wait=50%
oo & === Analytic:1/O Wait=80%
0 2 4 6 8 10 12

Degree of Multiprogramming

* Modeling of multiprogramming with an implicit assumption of a
scheduler

Process Behavior

* A simple categorization: CPU-bound or I/0O-

bound?
(a) | — — — |
Long CPU burst \
Waiting for 1/O
Short CPU burst \
(b) [] 1 I — L +— ———1

Time
—.—

* CPU- & I/0-bound [Figure 2-2 in Tanenbaum & Bos, 2014]

Scheduling Timing

» When does a scheduler make scheduling
decision?

« When a new process is created
« When a process exits

* When a process blocks on I/0 request or some
other situations (e.g., Unix wait(2))

* When an I/0 interrupt occurs

* When a scheduling quantum expires (clock
interrupts)

Preemptive and Non-preemptive
Scheduling

* Non-preemptive scheduling: selects a
process to run until it blocks or voluntarily
releases the CPU

 Preemptive scheduling: selects a process to
run for a scheduling quantum, and suspends
it to run another when the clock interrupts.

Process State and Scheduling

 Scheduler gets to run and makes a scheduling decision
1. aprocess being created

2. the running state to the blocked state
+ eg., I/0 request

3. the running state to the ready state
4. the blocked state to the ready state
« eg., I/0 interrupt

5. aprocess terminates

* Non-preemptive scheduling: 2 & 5

* Preemptive scheduling: 3 & 4

« Hardware support (clock interrupts)
Blocked 4 Ready

Preemptive Scheduling

* Require hardware support (clock interrupt)

* More complex

* How to deal with shared data (2 processes share
data, can the 2" process read & write the data?)

« Kernel code also need to maintain data
structures, but interrupts can happen at any
time

Categories of Scheduling
Algorithms
* Batch

 Tnteractive

e Realtime

Scheduling Goals and Criteria

* General goals

 Scheduling criteria

» System specific criteria
* Batch

 Interactive

e Realtime

General Goals

* Fairness

* Giving each process a fair share of thee CPU
* Policy enforcement

» Seeing that stated policy is carried out

e Balance

* Keeping all parts of the system busy

Scheduling Criteria

« CPU utilization: percentage of time that CPU is busy
« Throughput: processes/jobs/tasks completed per unit of fime

e Turnaround time: the interval from the time of submission of a
process to the time of completion

 Response time: latency to begin a response to a request

« Waiting time: the sum of the time waiting in the ready state

* Proportionality: how well user's expectations are met

* Predictability: variance of various criteria and scheduling behavior

« Meeting deadlines: how well deadlines are met (or certain tasks)

Shortest-Job-First

8 4 4 4 4 4 4 8
A B | C | D B | C | D A
(a) (b)

* (a) Running four jobs in the original order. (b)
Running them in shortest job first order.[Figure
2-41 in Tanenbaum & Bos, 2014]

Round-Robin

Current Next Current
process process process

N S N

B F D G A F D G A B

(@) (b)

* (a) The list of runnable processes. (b) The list of

runnable processes after B uses up its quantum.
[Figure 2-42 in Tanenbaum & Bos, 2014]

Priority-Scheduling

Queue Runable processes
headers .

Priority 4 (Highest priority)

Priority 3

Priority 2

Priority 1 (Lowest priority)

* A scheduling algorithm with four priority
classes. [Figure 2-43 in Tanenbaum & Bos,

2014]

Batch Systems

e Goals
* Maximize throughput
* Minimize turnaround time

 Maximize CPU utilization

Interactive Systems

* Goals
* Minimize response time

« Optimize proportionality to meet users’
expectations

Realtime Systems

e Goals
* Maximizes the chance to meet deadlines

* Maximizes predictability of system behavior

Scheduling Algorithms

* First-Come, First-Served (FCFS)

* Shortest-Job-First (SJF)

« Shortest-Remaining-Time-First (SRTF)
« Round-Robin (RR)

* Priority Scheduling

* Multilevel Queue

« Shortest-Process-First

 Guaranteed Scheduling

* Lottery Scheduling

* Fair-Share Scheduling

Batch Systems

* First-Come, First-Served
« Shortest-Job-First
» Shortest-Remaining-Time-First

Interactive System

* Round-Robin Scheduling
* Priority Scheduling

* Multiple Queues
 Shortest Process Next
 Guaranteed Scheduling
* Lottery Scheduling

* Fair-Share Scheduling

Realtime System

» Time plays essential role

 Must or maximize chances to meet deadlines

* Categories
 Hard real time
e Soft real time

* Periodic or aperiodic

» Schedulable condition Z— <1

I

Policy vs. Mechanism

* Mechanism enforces policy
* Scheduling algorithms need to be parameterized

* User processes can fill the parameters to meet
policy goals

Thread Scheduling

Process A Process B Process A Process B
Order in which l

threads run \
|

2. Runtime 1 \2 3

e | YD (1)
picks a —

thread B =

4
L1. Kernel picks a process 1 Kernel picks a thread E
Possible: A1, A2, A3, A1, A2, A3 Possible: A1, A2, A3, A1, A2, A3
Not possible: A1, B1, A2, B2, A3, B3 Also possible: A1, B1, A2, B2, A3, B3

(a) (b)

* (a) Possible scheduling of user-level threads with a 50-msec
process quantum and threads that run 5 ms per CPU burst. (b)
Possible scheduling of kernel-level threads with the same
characteristics as (a). [Figure 2-44 in Tanenbaum & Bos, 2014]

3/1/2018 CUNY | Brooklyn College 26

Contention Scope

* Process contention scope

» User-level threads compete for CPU within a
process

» System-contention scope

* Kernel threads compete for CPU within the
system

POSIX Thread

* POSIX thread library provides APTI to select
contention scope
* indicating whether a user-space thread is

bound directly to a single kernel-scheduling
entity

« PTHREAD_SCOPE_PROCESS
PTHREAD_SCOPE_SYSTEM

Multiple-Processor Scheduling

» Asymmetric multiprocessing

* All scheduling decision, I/0O processing, and
other system activities are handled by a single
processor

» Symmetric multiprocessing

* Each processor is self-scheduling
« commoh ready queue

« private ready queue

Multiple-Processor Scheduling:
Considerations

* Processor affinity
* Load balancing
* Multicore processors

* Virtualization and scheduling

Questions?

» Concepts of scheduling
 Scheduling goals and criteria
 Scheduling algorithms

* Process and thread scheduling

» Considerations in multiprocessor scheduling

