
CISC 7310X

C05: CPU Scheduling
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

3/1/2018 1CUNY | Brooklyn College

Outline

• Recap & issues

• CPU Scheduling

• Concepts

• Goals and criteria

• Thread

• Multiprocessor

• Project 2 discussion

• Assignment

3/1/2018 CUNY | Brooklyn College 2

Recall Process and Modeling of
Multiprogramming

• Scheduler

3/1/2018 CUNY | Brooklyn College 3

• Scheduler and processes [Figure 2-
3 in Tanenbaum & Bos, 2014]

• Modeling of multiprogramming with
an implicit assumption of a scheduler

Scheduler and Scheduling
Algorithm

3/1/2018 CUNY | Brooklyn College 4

• Process states [Figure 2-2 in Tanenbaum & Bos, 2014]

• CPU scheduler makes the decision on which
process (or thread) to run next if more than
one process is in the ready state with a
scheduling algorithm

Assumptions?

• I/O, scheduling?

3/1/2018 CUNY | Brooklyn College 5

• Modeling of multiprogramming with an implicit assumption of a
scheduler

Process Behavior

3/1/2018 CUNY | Brooklyn College 6

• A simple categorization: CPU-bound or I/O-
bound?

• CPU- & I/O-bound [Figure 2-2 in Tanenbaum & Bos, 2014]

Scheduling Timing

• When does a scheduler make scheduling
decision?

• When a new process is created

• When a process exits

• When a process blocks on I/O request or some
other situations (e.g., Unix wait(2))

• When an I/O interrupt occurs

• When a scheduling quantum expires (clock
interrupts)

3/1/2018 CUNY | Brooklyn College 7

Preemptive and Non-preemptive
Scheduling

• Non-preemptive scheduling: selects a
process to run until it blocks or voluntarily
releases the CPU

• Preemptive scheduling: selects a process to
run for a scheduling quantum, and suspends
it to run another when the clock interrupts.

3/1/2018 CUNY | Brooklyn College 8

Process State and Scheduling

3/1/2018 CUNY | Brooklyn College 9

• Scheduler gets to run and makes a scheduling decision

1. a process being created

2. the running state to the blocked state

• e.g., I/O request

3. the running state to the ready state

4. the blocked state to the ready state

• e.g., I/O interrupt

5. a process terminates

• Non-preemptive scheduling: 2 & 5

• Preemptive scheduling: 3 & 4

• Hardware support (clock interrupts)

New

terminated

5

0

Preemptive Scheduling

• Require hardware support (clock interrupt)

• More complex

• How to deal with shared data (2 processes share
data, can the 2nd process read & write the data?)

• Kernel code also need to maintain data
structures, but interrupts can happen at any
time

3/1/2018 CUNY | Brooklyn College 10

Categories of Scheduling
Algorithms

• Batch

• Interactive

• Realtime

3/1/2018 CUNY | Brooklyn College 11

Scheduling Goals and Criteria

• General goals

• Scheduling criteria

• System specific criteria

• Batch

• Interactive

• Realtime

3/1/2018 CUNY | Brooklyn College 12

General Goals

• Fairness

• Giving each process a fair share of thee CPU

• Policy enforcement

• Seeing that stated policy is carried out

• Balance

• Keeping all parts of the system busy

3/1/2018 CUNY | Brooklyn College 13

Scheduling Criteria

• CPU utilization: percentage of time that CPU is busy

• Throughput: processes/jobs/tasks completed per unit of time

• Turnaround time: the interval from the time of submission of a
process to the time of completion

• Response time: latency to begin a response to a request

• Waiting time: the sum of the time waiting in the ready state

• Proportionality: how well user’s expectations are met

• Predictability: variance of various criteria and scheduling behavior

• Meeting deadlines: how well deadlines are met (or certain tasks)

3/1/2018 CUNY | Brooklyn College 14

Shortest-Job-First

3/1/2018 CUNY | Brooklyn College 15

• (a) Running four jobs in the original order. (b)
Running them in shortest job first order.[Figure
2-41 in Tanenbaum & Bos, 2014]

Round-Robin

3/1/2018 CUNY | Brooklyn College 16

• (a) The list of runnable processes. (b) The list of
runnable processes after B uses up its quantum.
[Figure 2-42 in Tanenbaum & Bos, 2014]

Priority-Scheduling

3/1/2018 CUNY | Brooklyn College 17

• A scheduling algorithm with four priority
classes. [Figure 2-43 in Tanenbaum & Bos,
2014]

Batch Systems

• Goals

• Maximize throughput

• Minimize turnaround time

• Maximize CPU utilization

3/1/2018 CUNY | Brooklyn College 18

Interactive Systems

• Goals

• Minimize response time

• Optimize proportionality to meet users’
expectations

3/1/2018 CUNY | Brooklyn College 19

Realtime Systems

• Goals

• Maximizes the chance to meet deadlines

• Maximizes predictability of system behavior

3/1/2018 CUNY | Brooklyn College 20

Scheduling Algorithms

• First-Come, First-Served (FCFS)

• Shortest-Job-First (SJF)

• Shortest-Remaining-Time-First (SRTF)

• Round-Robin (RR)

• Priority Scheduling

• Multilevel Queue

• Shortest-Process-First

• Guaranteed Scheduling

• Lottery Scheduling

• Fair-Share Scheduling

3/1/2018 CUNY | Brooklyn College 21

Batch Systems

• First-Come, First-Served

• Shortest-Job-First

• Shortest-Remaining-Time-First

3/1/2018 CUNY | Brooklyn College 22

Interactive System

• Round-Robin Scheduling

• Priority Scheduling

• Multiple Queues

• Shortest Process Next

• Guaranteed Scheduling

• Lottery Scheduling

• Fair-Share Scheduling

3/1/2018 CUNY | Brooklyn College 23

Realtime System

• Time plays essential role

• Must or maximize chances to meet deadlines

• Categories

• Hard real time

• Soft real time

• Periodic or aperiodic

• Schedulable condition

3/1/2018 CUNY | Brooklyn College 24

Policy vs. Mechanism

• Mechanism enforces policy

• Scheduling algorithms need to be parameterized

• User processes can fill the parameters to meet
policy goals

3/1/2018 CUNY | Brooklyn College 25

Thread Scheduling

3/1/2018 CUNY | Brooklyn College 26

• (a) Possible scheduling of user-level threads with a 50-msec
process quantum and threads that run 5 ms per CPU burst. (b)
Possible scheduling of kernel-level threads with the same
characteristics as (a). [Figure 2-44 in Tanenbaum & Bos, 2014]

Contention Scope

• Process contention scope

• User-level threads compete for CPU within a
process

• System-contention scope

• Kernel threads compete for CPU within the
system

3/1/2018 CUNY | Brooklyn College 27

POSIX Thread

• POSIX thread library provides API to select
contention scope

• indicating whether a user-space thread is
bound directly to a single kernel-scheduling
entity

• PTHREAD_SCOPE_PROCESS
PTHREAD_SCOPE_SYSTEM

3/1/2018 CUNY | Brooklyn College 28

Multiple-Processor Scheduling

• Asymmetric multiprocessing

• All scheduling decision, I/O processing, and
other system activities are handled by a single
processor

• Symmetric multiprocessing

• Each processor is self-scheduling

• common ready queue

• private ready queue

3/1/2018 CUNY | Brooklyn College 29

Multiple-Processor Scheduling:
Considerations

• Processor affinity

• Load balancing

• Multicore processors

• Virtualization and scheduling

3/1/2018 CUNY | Brooklyn College 30

Questions?

• Concepts of scheduling

• Scheduling goals and criteria

• Scheduling algorithms

• Process and thread scheduling

• Considerations in multiprocessor scheduling

3/1/2018 CUNY | Brooklyn College 31

