
CISC 7310X

C03: Threads
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

2/22/2018 1CUNY | Brooklyn College



Outline

• Recap & issues

• Modeling revisited

• Thread

• Assignment

• Team Project 2

2/22/2018 CUNY | Brooklyn College 2



Recap & Issues

• Topics

• Process and a simple model of multiprogramming

• Assignments

• Practice and Project 1

• Where are those fields in the process table entry? 

• Question received: should I trace to next level/data 
structure? How deep should I dig? 

2/22/2018 CUNY | Brooklyn College 3



Simple Multiprogramming Model

• Assumptions

• n processes in the main memory;

• a process spends a fraction p of its waiting for I/O 
independent of the others

• Analysis

• CPU is idle when all processes are waiting for I/O

• The probability that all n processes waiting for I/O 
is pn

• CPU Utilization = 1 - pn

2/22/2018 CUNY | Brooklyn College 4



Modeling Multiprogramming

• CPU utilization

2/22/2018 CUNY | Brooklyn College 5

• CPU utilization [Figure 2-6 in Tanenbaum & Bos, 2014]



Simulation Model

• Analytic and simulation models

2/22/2018 CUNY | Brooklyn College 6



Monte Carlo Simulation

• Estimate the value of an unknown quantity 

• drawing random samples (from a population)

• applying principles of inferential statistics

2/22/2018 CUNY | Brooklyn College 7



Estimate the Value of Unknown 
Quantity 

• Estimate the value of 

• If we are to toss a pebble in a square that 
bounds a circle, the chance that the pebble lands 
on inside the circle is proportional to its area. 

2/22/2018 CUNY | Brooklyn College 8

𝜋 ≈ 4
𝑁𝑐
𝑁



Law of Large Numbers

• Implication: it takes longer time to compute 
when N is increased. 

2/22/2018 CUNY | Brooklyn College 9

ത𝑋 → 𝐸 𝑋 as 𝑁 → ∞



Multiple Processes

• Use multiple processes to estimate 

2/22/2018 CUNY | Brooklyn College 10

Nc



Data Sharing

• How are the data are shared?

• Examine the example implementation using 
an FIFO pipe

• Sample Program Repository

• W3_Process/simulation/multiprocess

2/22/2018 CUNY | Brooklyn College 11



Questions

• Tools of the trade

• Programming & graphing

• Monte Carlo simulation 

• Application in estimation multiprogramming 
metrics

• Multiprocessed implementation of a Monte
Carlo simuation

2/22/2018 CUNY | Brooklyn College 12



Multithread

• How are the data are shared?

• Examine the example implementation using 
POSIX threads

• Sample Program Repository

• W4_Thread/simulation/multithread

2/22/2018 CUNY | Brooklyn College 13



Multithread

• Use multiple threads to estimate 

2/22/2018 CUNY | Brooklyn College 14

Nc



Thread Library: POSIX 
Threads

• Example the simulation program

2/22/2018 CUNY | Brooklyn College 15

Pthread function calls [Figure 2-14 in Tanenbaum & Bos, 2014]



User’s Perspective: Writing 
Multithreaded Code

• Multiprocessed and multithreaded code are 
more difficult to write

• Multithreaded code

• Examples:

• Global variables shared by multiple threads

• Thread local variables

2/22/2018 CUNY | Brooklyn College 16



Global Variables

• Easier to share data among multiple threads 
than among multiple processes

2/22/2018 CUNY | Brooklyn College 17

Conflict may happen [Figure 2-19 in Tanenbaum & Bos, 2014]



Use Thread

2/22/2018 CUNY | Brooklyn College 18

Three ways to construct a server. [Figure 2-10 in Tanenbaum & Bos, 2014]



Questions

• User’s perspective on thread

• Issues when writing multithreaded code

• Sharing data: variables

• Synchronization issues (to be discussed in future 
lessons)

2/22/2018 CUNY | Brooklyn College 19



Thread Model

• User threads

• Threads provided at the user level

• Kernel threads

• Threads provided by the kernel

2/22/2018 CUNY | Brooklyn College 20

Process and threads [Figure 2-11 in Tanenbaum & Bos, 2014]



Process and Thread

• Many-to-one model

• One-to-one model

• Many-to-many model

2/22/2018 CUNY | Brooklyn College 21



Many-to-one model

• Map many user level threads to one kernel 
thread

• Thread management done by the thread library 
at in user space

• Efficient, however, the entire process may 
be blocked

• Examples: Solaris, GNU portal threads

2/22/2018 CUNY | Brooklyn College 22



One-to-One Model

• Maps each user thread to a kernel thread

• High concurrency

• Creating kernel threads is more costly

• Examples: Linux and Windows

2/22/2018 CUNY | Brooklyn College 23



Many-to-Many Model

• Multiplexes many user-level threads to a 
smaller or equal number of kernel threads

• More complex to design and build

• Enjoy benefits both one-to-one model and 
many-to-one model

• Examples: IRIX, HP-UX

2/22/2018 CUNY | Brooklyn College 24



Process and Thread Properties

2/22/2018 CUNY | Brooklyn College 25

Process and threads properties [Figure 2-12 in Tanenbaum & Bos, 2014]



Address Space & Stack

• Threads shares the process’s address space

• Each thread has its own stack

2/22/2018 CUNY | Brooklyn College 26

Each thread has its own stack [Figure 2-13 in Tanenbaum & Bos, 2014]



System Perspective: 
Implementing Threads

• User-level (many-to-one)

• The kernel (one-to-one)

• Hybrid of the two (many-to-many)

2/22/2018 CUNY | Brooklyn College 27



User Space or the Kernel

• In the user space, or in the kernel

2/22/2018 CUNY | Brooklyn College 28

User- and kernel-level threads [Figure 2-16 in Tanenbaum & Bos, 2014]



Hybrid

2/22/2018 CUNY | Brooklyn College 29

Multiplexing user-level onto kernel-level threads [Figure 2-17 
in Tanenbaum & Bos, 2014]



Efficiency and Concurrency

• Kernel threads are more expensive to create

• Can support multiple processors

• User-level threads can be blocked by the 
process

• Less concurrency, in particular, on 
multiprocessor systems

• Scheduler activation 

• Pop-up threads

2/22/2018 CUNY | Brooklyn College 30



Pop-up Threads

2/22/2018 CUNY | Brooklyn College 31

Creation of a new thread when a message arrives [Figure 2-18 
in Tanenbaum & Bos, 2014]



Questions

• Threads and multithreads

• Why threads?

• Shared address space

• Light weight

• More efficient use of CPUs

• Similar to process (multiprogramming)

• Multiple processors

• Modeling

2/22/2018 CUNY | Brooklyn College 32



Project 2

• Objectives

• First hand experience with process and thread

• Experimental approach to evaluate a system

2/22/2018 CUNY | Brooklyn College 33


