CISC 7310X
C03: Threads

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College

Outline

* Recap & issues
* Modeling revisited

* Thread
* Assignment

« Team Project 2

Recap & Issues

* Topics
* Process and a simple model of multiprogramming
* Assignments

* Practice and Project 1
* Where are those fields in the process table entry?

« Question received: should I trace to next level/data
structure? How deep should T dig?

Simple Multiprogramming Model

* Assumptions
* n processes in the main memory;

* a process spends a fraction p of its waiting for I/0
independent of the others

* Analysis
 CPU is idle when all processes are waiting for I/0
* The probability that all n processes waiting for I/0
s p"
« CPU Utilization =1 - p"

Modeling Multiprogramming

 CPU utilization

20% I/O wait

100 |-
80 | 50% /O wait
60 80% I/O wait

B
=

M2
o=

CPU utilization (in percent)

| | | | | | |
0 1 2 3 4 5 6 7 8 9 10
Degree of multiprogramming

« CPU utilization [Figure 2-6 in Tanenbaum & Bos, 2014]

2/22/2018 CUNY | Brooklyn College

Simulation Model

* Analytic and simulation models

CPU Utilization

1.0

0.8 1

o
o
1

o
~

0.2 1

0.0 -

o
w

Simulation:l/O Wait=20%
Simulation:l/O Wait=50%
Simulation:I/O Wait=80%
Analytic:I/0O Wait=20%
Analytic:I/O Wait=50%
Analytic:I/O Wait=80%

4 6

8 10 12

Degree of Multiprogramming

Monte Carlo Simulation

* Estimate the value of an unknown quantity
» drawing random samples (from a population)

» applying principles of inferential statistics

Estimate the Value of Unknown
Quantity

* Estimate the value of &

 If we are to toss a pebble in a square that
bounds a circle, the chance that the pebble lands
on inside the circle is proportional to its area.

2/22/2018 CUNY | Brooklyn College 8

Law of Large Numbers

» Implication: it takes longer time to compute
when N is increased.

X > EX) asN -

Multiple Processes

» Use multiple processes to estimate =

—

=

N

2/22/2018 CUNY | Brooklyn College

Data Sharing

* How are the data are shared?

» Examine the example implementation using
an FIFO pipe

« Sample Program Repository

« W3_Process/simulation/multiprocess

Questions

* Tools of the trade
 Programming & graphing
* Monte Carlo simulation

* Application in estimation multiprogramming
metrics

* Multiprocessed implementation of a Monte
Carlo simuation

Multithread

* How are the data are shared?

» Examine the example implementation using
POSIX threads

« Sample Program Repository
« W4_Thread/simulation/multithread

Multithread

« Use multiple threads to estimate «

-
T

2/22/2018 CUNY | Brooklyn College

14

Thread Library: POSIX

Threads

» Example the simulation program

Thread call

Description

Pthread_create

Create a new thread

Pthread_exit

Terminate the calling thread

Pthread_join

Wait for a specific thread to exit

Pthread_vyield

Release the CPU to let another thread run

Pthread_attr_init

Create and initialize a thread’s attribute structure

Pthread_attr_destroy

Remove a thread’s attribute structure

Pthread function calls [Figure 2-14 in Tanenbaum & Bos, 2014]

2/22/2018

CUNY | Brooklyn College

15

User's Perspective: Writing
Multithreaded Code

* Multiprocessed and multithreaded code are
more difficult to write

* Multithreaded code

« Examples:
* Global variables shared by multiple threads

« Thread local variables

Global Variables

* Easier to share data among multiple threads
than among multiple processes

Thread 1 Thread 2
@ é
S Access (ermo set)
| :

Open (errno overwritien)

%

;

Ermo inspected

Conflict may happen [Figure 2-19 in Tanenbaum & Bos, 2014]

Use Thread

Model Characteristics

Threads Parallelism, blocking system calls
Single-threaded process | No parallelism, blocking system calls
Finite-state machine Parallelism, nonblocking system calls, interrupts

Three ways to construct a server. [Figure 2-10 in Tanenbaum & Bos, 2014]

Questions

» User's perspective on thread

* Issues when writing multithreaded code
 Sharing data: variables

 Synchronization issues (to be discussed in future
lessons)

Thread Model

 User threads
« Threads provided at the user level
« Kernel threads

« Threads provided by the kernel

Process 1 Process 2 Process 3 Process

I

N
e @ QD}D @

Thread

Kernel
space

Kernel Kernel

(a) (b)

Process and threads [Figure 2-11 in Tanenbaum & Bos, 2014]

2/22/2018 CUNY | Brooklyn College

Process and Thread

* Many-to-one model
* One-to-one model

* Many-to-many model

Many-to-one model

* Map many user level threads to one kernel
thread

« Thread management done by the thread library
at in user space

» Efficient, however, the entire process may
be blocked

« Examples: Solaris, GNU portal threads

One-to-One Model

* Maps each user thread to a kernel thread
* High concurrency

* Creating kernel threads is more costly

» Examples: Linux and Windows

Many-to-Many Model

* Multiplexes many user-level threads to a
smaller or equal number of kernel threads

* More complex to design and build

* Enjoy benefits both one-to-one model and
many-to-one model

» Examples: IRIX, HP-UX

Process and Thread Properties

Per process items Per thread items
Address space Program counter
Global variables Registers

Open files Stack

Child processes State

Pending alarms
Signals and signal handlers
Accounting information

Process and threads properties [Figure 2-12 in Tanenbaum & Bos, 2014]

2/22/2018 CUNY | Brooklyn College 25

Address Space & Stack

« Threads shares the process’'s address space
* Each thread has its own stack

Thread 2

Thread 1 \ Thread 3
\ /

X
:Rili

Thread 1's =

Kernel

Each thread has its own stack [Figure 2-13 in Tanenbaum & Bos, 2014]

System Perspective:
Implementing Threads
 User-level (many-to-one)

* The kernel (one-to-one)

* Hybrid of the two (many-to-many)

User Space or the Kernel

* In the user space, or in the kernel

Process Thread Process Thread

_/

_/

Kernel |
space ‘{'I Kernel — Kernel — E
\ % 7 }
/ \ / I
Run-time Thread Process Process Thread
system table table table table

User- and kernel-level threads [Figure 2-16 in Tanenbaum & Bos, 2014]

2/22/2018 CUNY | Brooklyn College

28

Hybrid

Multiple user threads
on a kernel thread

_

User
> space

-

Kernel

Kernel
—<— Kernel thread space

Multiplexing user-level onto kernel-level threads [Figure 2-17
in Tanenbaum & Bos, 2014]

2/22/2018

CUNY | Brooklyn College

29

Efficiency and Concurrency

* Kernel threads are more expensive to create
« Can support multiple processors

» User-level threads can be blocked by the
process

« Less concurrency, in particular, on
multiprocessor systems

* Scheduler activation
* Pop-up threads

Pop-up Threads

Pop-up thread
Process created to handle

incoming message
Existing thread

Incoming message l
Network

(@) (b)

Creation of a new thread when a message arrives [Figure 2-18
in Tanenbaum & Bos, 2014]

2/22/2018 CUNY | Brooklyn College

31

Questions

* Threads and multithreads
* Why threads?

 Shared address space
* Light weight
* More efficient use of CPUs

« Similar to process (multiprogramming)

 Multiple processors

* Modeling

Project 2

* Objectives
* First hand experience with process and thread

 Experimental approach to evaluate a system

