CISC 7310X
C0O3: Process

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College

Recap & Issues

* Topics
* Tools of the trade

* SCM (e.g., Git), Virtualization (e.g., Virtual Box), Operating Systems
(e.g., Linux)

* A glimpse of systems research
* OS overview
* Kernel mode, user mode, kernel, shell
« Computer systems hardware overview
« Architecture and organization, interrupts and I/0
* Assignments

* Practice and Project 1

Project 1 Observations

* What should be in the repository?
 Derived artifacts generally should not be in the repository
* Can be reproduced, with difference without substance
» Occupy space
* Binary files, "diff" is difficult
 Experiences?
« OS kernels, shells, terminals, modules, device drivers
- Systems programming
« System calls

« Question: how are these related to the discussion in the
lectures?

Questions?

* Recap & issues
* Topics discussed

* Assignments

Program and Process

* Program
* A sequence of instructions
* Process

* Representing an activity consisting of a program,
input, output, and a state

User's Perspective: Creating

Process
» In Unix, use system call fork()

 Unix is interpreted as any POSIX-based systems
» Linux, FreeBSD, OS X, Solaris, Android, iOS

* What fork() does?
» Example

* In Sample Programs

User's Perspective: Creating

Process

 On Windows, use Win32 API CreateProcess
* Must load a specified program

« Example

* In Sample Programs

User's Perspective: Process
Status
* InLinux, use ps

* In Windows, use Task Manager
(taskmgr.exe) or TaskList (tasklist.exe)

Multiprogramming

* Process rapidly switching back and forth to
share the CPU time

Process

> O O O
|
I

Tima —

(c)

* Inasingle processor core system, only one program is active at once
(pseudoparallelsim) [Figure 2-1(c) in Tanenbaum & Bos, 2014]

Logical Program Counter

* A processor has only one program counter register.

* Need to save and restore program counters

One program counter
N

Process
switch

A
q
B

__.-"-'

T
T x‘xk“x

/

e

Four program counters

",
!

.,

“k

C

g

J—J /|

D

(@)

* Multiprogramming of 4 processes [Figure 2-1(a) and (b)

in Tanenbaum & Bos, 2014]

y
B}

‘|

DY

Systems Perspective

* Process creation
* Process scheduling
* Process termination

* Interprocess communication

Process Creation

* 4 principal events cause process creation
* Created at system initialization
 Requested by a running process
* Requested by a user
* Initialized in a batch job

» Essentially, one method, i.e., via a process
creation system call

* fork(), CreateProcess(...)

System Initialization

* Numerous processes are created when the
OS boots

* Including many background processes (services,
daemons)

Running Processes

» Often create processes to do the work

» Example
* One receives and stores emails

* Another check if an email is a SPAM

 Easier to divide the work into several related
processes

* Easier to take advantage of processors

User Request and Batch System

* Particularly in an iterative system, users can
start a program

e Enter a command
e Double-click an icon
* Batch system

* Run jobs in a job queue

Process Termination

* Typically a process is terminated due to one
of the 4 conditions,

* Normal exit (voluntarily)
* Error exit (voluntarily)
* Fatal error (involuntarily)

» Killed by another process (involuntarily)

Normal Exit

» Upon completion its work, the compiler
issues a system call

» Example
 Unix: exit(...), exit_group(...)
* Need to differentiate _EXIT(2) and EXIT(3)

* In Sample Programs

« Windows: ExitProcess(...)

Error Exit

* The process discovers an error and quits
* Developers programmed it in
« The program issues the system call to exit
« Example:

« In Sample Programs

Fatal Error

* A process caused unrecoverable error
« Example:

« In Sample Programs

* In some systems (e.g., Unix), a process may
inform the OS that it wishes to handle
itself

« Example

« In Sample Programs

Terminated by Another Process

* A process can request to terminate another
process

* By issue a system call

» Example
« Unix: kill(...)
* In Sample Programs

« Win32: TerminateProcess(...)

Process Hierarchy

« In some systems, process and child process continued to be
associated in certain ways

* Process group

* In Unix, a process and all of its descendent form a group

* Implication: when a user signals a process, the signal is delivered to all
members of the process group

« Unix cannot disown descendants

* In others, there may not be a hierarchy

« In Windows, all processes are equal and hierarchy can be invalidated

* Parent is given a handle (a special token, a data structure) o use to control
the processes it created

* But the token can be passed to other processes

Questions?

» Concept of process creation

* Concept of process termination

Process States

* A process can be one of a set of states

« Example

w 1. Process blocks for input

1 3 2 2. Scheduler picks another process
3. Scheduler picks this process

Blocked 4 4. Input becomes available

* Process states [Figure 2-2 in Tanenbaum & Bos, 2014]

2/15/2018 CUNY | Brooklyn College 23

Process States: Examples

* Running
* Actually using the CPU at the instant
* Ready

* Runnable, temporarily stopped to let another
process run

 Blocked

 Unable to run until some external event happens

Process Cannot Run

» A process may be blocked due to a few
conditions

* Locally it cannot continue, typically because it is
waiting for input and is not yet available

« Example

* In Unix, cat helloworld.txt | grep "Hello"
« In Windows, more helloworld.txt | find "Hello"

» The process is conceptually ready and able to
run, but the OS has decided to allocate the CPU
to another process

Scheduler

* OS scheduler handles interrupts, starts and
stops processes

Processes

Scheduler

 Scheduler and processes [Figure 2-3 in Tanenbaum &
Bos, 2014]

Scheduler Examples

e Xvb:

* https://github.com/mit-pdos/xvé6-public/blob/master/proc.c#L323

e Linux scheduler

* https://github.com/torvalds/linux/blob/master/kernel/sched/core.c#L 3311

2/15/2018 CUNY | Brooklyn College

27

https://github.com/mit-pdos/xv6-public/blob/master/proc.c#L323
https://github.com/torvalds/linux/blob/master/kernel/sched/core.c#L3311

Questions

* Process states and scheduler?

Implementation: Process Table

* Process table

* An entry per process

« Commonly referred to as process control blocks

* An array of the process entries

Process Table Entry: Examples

* Process table entry or process control block

* Xv6: struct proc

* https://qgithub.com/mit-pdos/xv6-
public/blob/master/proc.h#L38

e Linux: struct task_struct

* https://qgithub.com/torvalds/linux/blob/master/i
nclude/linux/sched.h#L524

2/15/2018 CUNY | Brooklyn College 30

https://github.com/mit-pdos/xv6-public/blob/master/proc.h#L38
https://github.com/torvalds/linux/blob/master/include/linux/sched.h#L524

Process Table Entry

« Common attributes

* Process table entry [Figure 2-4 in Tanenbaum & Bos,

Process management
Registers

Program counter
Program status word
Stack pointer

Process state

Priority

Scheduling parameters
Process |ID

Parent process
Process group

Signals

Time when process started
CPU time used
Children’s CPU time
Time of next alarm

Memory management
Pointer to text segment info
Pointer to data segment info
Pointer to stack segment info

File management
Root directory
Working directory
File descriptors
User ID

Group ID

2014]

2/15/2018

CUNY | Brooklyn College

31

Implementation: Handling

Interrupts
* May be triggered by clocks, and others

1. Hardware stacks program counter, etc.

2. Hardware loads new program counter from interrupt vector.
3. Assembly language procedure saves registers.

4. Assembly language procedure sets up new stack.

5. C interrupt service runs (typically reads and buffers input).

6. Scheduler decides which process is to run next.

/. C procedure returns to the assembly code.

8. Assembly language procedure starts up new current process.

 Handling interrupts for processes [Figure 2-5 in
Tanenbaum & Bos, 2014]

2/15/2018 CUNY | Brooklyn College

32

Benefit of Multiprogramming

* CPU utilization can be improved due to
multiprogramming

e Intuition

« When one process is waiting for I/O, another can be
scheduled to CPU

« How much do we benefit?
* Future lesson

« In more realistic scenarios, how much can we benefit
more from a better scheduling system?

Modeling Multiprogramming

 CPU utilization

20% I/O wait

100 |-
80 | 50% /O wait
60 80% I/O wait

B
=

M2
o=

CPU utilization (in percent)

| | | | | | |
0 1 2 3 4 5 6 7 8 9 10
Degree of multiprogramming

« CPU utilization [Figure 2-6 in Tanenbaum & Bos, 2014]

2/15/2018 CUNY | Brooklyn College

34

Simple Multiprogramming Model

* Assumptions
* n processes in the main memory;

* a process spends a fraction p of its waiting for I/0
independent of the others

* Analysis
 CPU is idle when all processes are waiting for I/0
* The probability that all n processes waiting for I/0
s p"
« CPU Utilization=1 - p"

Questions

* Implementation
* Modeling?

Assignment

* Practice assignment in Blackboard

