
CISC 7310X

C03: Process
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

2/15/2018 1CUNY | Brooklyn College

Recap & Issues

• Topics

• Tools of the trade

• SCM (e.g., Git), Virtualization (e.g., Virtual Box), Operating Systems
(e.g., Linux)

• A glimpse of systems research

• OS overview

• Kernel mode, user mode, kernel, shell

• Computer systems hardware overview

• Architecture and organization, interrupts and I/O

• Assignments

• Practice and Project 1

2/15/2018 CUNY | Brooklyn College 2

Project 1 Observations
• What should be in the repository?

• Derived artifacts generally should not be in the repository

• Can be reproduced, with difference without substance

• Occupy space

• Binary files, “diff” is difficult

• Experiences?

• OS kernels, shells, terminals, modules, device drivers

• Systems programming

• System calls

• Question: how are these related to the discussion in the
lectures?

2/15/2018 CUNY | Brooklyn College 3

Questions?

• Recap & issues

• Topics discussed

• Assignments

2/15/2018 CUNY | Brooklyn College 4

Program and Process

• Program

• A sequence of instructions

• Process

• Representing an activity consisting of a program,
input, output, and a state

2/15/2018 CUNY | Brooklyn College 5

User’s Perspective: Creating
Process
• In Unix, use system call fork()

• Unix is interpreted as any POSIX-based systems

• Linux, FreeBSD, OS X, Solaris, Android, iOS

• What fork() does?

• Example

• In Sample Programs

2/15/2018 CUNY | Brooklyn College 6

User’s Perspective: Creating
Process
• On Windows, use Win32 API CreateProcess

• Must load a specified program

• Example

• In Sample Programs

2/15/2018 CUNY | Brooklyn College 7

User’s Perspective: Process
Status
• In Linux, use ps

• In Windows, use Task Manager
(taskmgr.exe) or TaskList (tasklist.exe)

2/15/2018 CUNY | Brooklyn College 8

Multiprogramming

2/15/2018 CUNY | Brooklyn College 9

• Process rapidly switching back and forth to
share the CPU time

• In a single processor core system, only one program is active at once
(pseudoparallelsim) [Figure 2-1(c) in Tanenbaum & Bos, 2014]

Logical Program Counter

• A processor has only one program counter register.

• Need to save and restore program counters

2/15/2018 CUNY | Brooklyn College 10

• Multiprogramming of 4 processes [Figure 2-1(a) and (b)
in Tanenbaum & Bos, 2014]

Systems Perspective

• Process creation

• Process scheduling

• Process termination

• Interprocess communication

2/15/2018 CUNY | Brooklyn College 11

Process Creation

• 4 principal events cause process creation

• Created at system initialization

• Requested by a running process

• Requested by a user

• Initialized in a batch job

• Essentially, one method, i.e., via a process
creation system call

• fork(), CreateProcess(…)

2/15/2018 CUNY | Brooklyn College 12

System Initialization

• Numerous processes are created when the
OS boots

• Including many background processes (services,
daemons)

2/15/2018 CUNY | Brooklyn College 13

Running Processes

• Often create processes to do the work

• Example

• One receives and stores emails

• Another check if an email is a SPAM

• Easier to divide the work into several related
processes

• Easier to take advantage of processors

2/15/2018 CUNY | Brooklyn College 14

User Request and Batch System

• Particularly in an iterative system, users can
start a program

• Enter a command

• Double-click an icon

• Batch system

• Run jobs in a job queue

2/15/2018 CUNY | Brooklyn College 15

Process Termination

• Typically a process is terminated due to one
of the 4 conditions,

• Normal exit (voluntarily)

• Error exit (voluntarily)

• Fatal error (involuntarily)

• Killed by another process (involuntarily)

2/15/2018 CUNY | Brooklyn College 16

Normal Exit

• Upon completion its work, the compiler
issues a system call

• Example

• Unix: exit(…), exit_group(…)

• Need to differentiate _EXIT(2) and EXIT(3)

• In Sample Programs

• Windows: ExitProcess(…)

2/15/2018 CUNY | Brooklyn College 17

Error Exit

• The process discovers an error and quits

• Developers programmed it in

• The program issues the system call to exit

• Example:

• In Sample Programs

2/15/2018 CUNY | Brooklyn College 18

Fatal Error

• A process caused unrecoverable error

• Example:

• In Sample Programs

• In some systems (e.g., Unix), a process may
inform the OS that it wishes to handle
itself

• Example

• In Sample Programs

2/15/2018 CUNY | Brooklyn College 19

Terminated by Another Process

• A process can request to terminate another
process

• By issue a system call

• Example

• Unix: kill(…)

• In Sample Programs

• Win32: TerminateProcess(…)

2/15/2018 CUNY | Brooklyn College 20

Process Hierarchy
• In some systems, process and child process continued to be

associated in certain ways

• Process group

• In Unix, a process and all of its descendent form a group

• Implication: when a user signals a process, the signal is delivered to all
members of the process group

• Unix cannot disown descendants

• In others, there may not be a hierarchy

• In Windows, all processes are equal and hierarchy can be invalidated

• Parent is given a handle (a special token, a data structure) to use to control
the processes it created

• But the token can be passed to other processes

2/15/2018 CUNY | Brooklyn College 21

Questions?

• Concept of process creation

• Concept of process termination

2/15/2018 CUNY | Brooklyn College 22

Process States

• A process can be one of a set of states

• Example

2/15/2018 CUNY | Brooklyn College 23

• Process states [Figure 2-2 in Tanenbaum & Bos, 2014]

Process States: Examples

• Running

• Actually using the CPU at the instant

• Ready

• Runnable, temporarily stopped to let another
process run

• Blocked

• Unable to run until some external event happens

2/15/2018 CUNY | Brooklyn College 24

Process Cannot Run

• A process may be blocked due to a few
conditions

• Locally it cannot continue, typically because it is
waiting for input and is not yet available

• Example

• In Unix, cat helloworld.txt | grep “Hello”

• In Windows, more helloworld.txt | find “Hello”

• The process is conceptually ready and able to
run, but the OS has decided to allocate the CPU
to another process

2/15/2018 CUNY | Brooklyn College 25

Scheduler

• OS scheduler handles interrupts, starts and
stops processes

2/15/2018 CUNY | Brooklyn College 26

• Scheduler and processes [Figure 2-3 in Tanenbaum &
Bos, 2014]

Scheduler Examples

• xv6:
• https://github.com/mit-pdos/xv6-public/blob/master/proc.c#L323

• Linux scheduler

• https://github.com/torvalds/linux/blob/master/kernel/sched/core.c#L3311

2/15/2018 CUNY | Brooklyn College 27

https://github.com/mit-pdos/xv6-public/blob/master/proc.c#L323
https://github.com/torvalds/linux/blob/master/kernel/sched/core.c#L3311

Questions

• Process states and scheduler?

2/15/2018 CUNY | Brooklyn College 28

• Process table

• An entry per process

• Commonly referred to as process control blocks

• An array of the process entries

2/15/2018 CUNY | Brooklyn College 29

Implementation: Process Table

Process Table Entry: Examples

• Process table entry or process control block

• xv6: struct proc

• https://github.com/mit-pdos/xv6-
public/blob/master/proc.h#L38

• Linux: struct task_struct

• https://github.com/torvalds/linux/blob/master/i
nclude/linux/sched.h#L524

2/15/2018 CUNY | Brooklyn College 30

https://github.com/mit-pdos/xv6-public/blob/master/proc.h#L38
https://github.com/torvalds/linux/blob/master/include/linux/sched.h#L524

Process Table Entry

• Common attributes

2/15/2018 CUNY | Brooklyn College 31

• Process table entry [Figure 2-4 in Tanenbaum & Bos,
2014]

Implementation: Handling
Interrupts
• May be triggered by clocks, and others

2/15/2018 CUNY | Brooklyn College 32

• Handling interrupts for processes [Figure 2-5 in
Tanenbaum & Bos, 2014]

Benefit of Multiprogramming

• CPU utilization can be improved due to
multiprogramming

• Intuition

• When one process is waiting for I/O, another can be
scheduled to CPU

• How much do we benefit?

• Future lesson

• In more realistic scenarios, how much can we benefit
more from a better scheduling system?

2/15/2018 CUNY | Brooklyn College 33

Modeling Multiprogramming

• CPU utilization

2/15/2018 CUNY | Brooklyn College 34

• CPU utilization [Figure 2-6 in Tanenbaum & Bos, 2014]

Simple Multiprogramming Model

• Assumptions

• n processes in the main memory;

• a process spends a fraction p of its waiting for I/O
independent of the others

• Analysis

• CPU is idle when all processes are waiting for I/O

• The probability that all n processes waiting for I/O
is pn

• CPU Utilization = 1 - pn

2/15/2018 CUNY | Brooklyn College 35

Questions

• Implementation

• Modeling?

2/15/2018 CUNY | Brooklyn College 36

Assignment

• Practice assignment in Blackboard

2/15/2018 CUNY | Brooklyn College 37

