
CISC 7310X

C01: Overview
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

2/1/2018 1CUNY | Brooklyn College

Quick Poll

• Did you take an Operating Systems class
before?

• Have you written programs in the C
programming language?

2/1/2018 CUNY | Brooklyn College 2

Outline

• Roll call

• Policy and organization of the course

• Overview of operating systems

• Assignments

• See the class website for due dates

• Descriptions are in Blackboard

2/1/2018 CUNY | Brooklyn College 3

Resources and Websites
• Class website

• http://www.sci.brooklyn.cuny.edu/~chen/course/CISC7310X

• Online syllabus

• Weekly schedule, lecture notes, and assignments

• Additional resources

• CUNY Blackboard

• https://bbhosted.cuny.edu

• Advisor grades

• Description of assignments

• Assignment submission

• Git repositories hosted at Github (https://github.com)

2/1/2018 CUNY | Brooklyn College 4

http://www.sci.brooklyn.cuny.edu/~chen/course/CISC7310X
https://bbhosted.cuny.edu/

Course Content

• Prerequisite

• Data structures and computer organizations

• Content

• Systems overview; systems programing; files;
access control; resources management; and
system modeling

2/1/2018 CUNY | Brooklyn College 5

Learning Objectives

• Interaction between system components
(hardware, operating systems, applications)

• Major issues and solutions in system design
(problems, data structures and algorithms)

• System programming including system calls
and programming tools

• System research methods and tools as well
as reading, writing, presentation, and
experimentation

2/1/2018 CUNY | Brooklyn College 6

Textbook and Major References

• Textbook

• Andrew S. Tanenbaum and Herbert Bos. 2014.
Modern Operating Systems (4th ed.). Prentice Hall
Press, Upper Saddle River, NJ, USA.

• Main reference books and online resources

• Abraham Silberschatz, Peter Baer Galvin, and Greg
Gagne. 2008. Operating System Concepts (8th ed.).
Wiley Publishing.

• https://pdos.csail.mit.edu/6.828/2017

• http://pages.cs.wisc.edu/~Eremzi/OSTEP/

2/1/2018 CUNY | Brooklyn College 7

https://pdos.csail.mit.edu/6.828/2017
http://pages.cs.wisc.edu/~Eremzi/OSTEP/

Grading Component and Scale

• Attendance

• Practice assignments

• Programming and laboratories

• Projects

• Team projects

• Research, programming, and laboratories

• Midterm exam

• Final exam

2/1/2018 CUNY | Brooklyn College 8

Teaming

• Draw a random ballot

• 3 – 4 students a team

• Steps

• Draw 3-member teams

• Students who draws ”*” draw again to join a team
that has 3 members or fewer.

2/1/2018 CUNY | Brooklyn College 9

Assignments

• Learn to accept and submit assignments
using Git at Github repositories

• Individual assignment

• Team assignment

2/1/2018 CUNY | Brooklyn College 10

Tool Support for Team Work

• Version control system

• Summary of your experience

9/28/2017 CUNY | Brooklyn College 11

Version Control System (VCS)

• Why do we need it?

• https://stackoverflow.com/questions/1408450/

9/28/2017 CUNY | Brooklyn College 12

“Have you ever:

Made a change to code, realised it was a mistake and wanted to revert back?
Lost code or had a backup that was too old?
Had to maintain multiple versions of a product?
Wanted to see the difference between two (or more) versions of your code?
Wanted to prove that a particular change broke or fixed a piece of code?
Wanted to review the history of some code?
Wanted to submit a change to someone else's code?
Wanted to share your code, or let other people work on your code?
Wanted to see how much work is being done, and where, when and by whom?
Wanted to experiment with a new feature without interfering with working code?

Team Support with VCS

• VCS provides a “centralized” location to
store project files

• Versioned code, configuration files, build scripts
…

• VCS tracks each contributors’ individual
changes

• VCS helps prevent concurrent work from
conflicting

9/28/2017 CUNY | Brooklyn College 13

Benefits of VCS

• Branching & merging.

• Example workflow: branching for each feature, branching
for each release.

• Traceability

• Example use scenarios: track changes between revisions of
a project, documented history of who did what and when

• Complete history of changes

• Example use scenarios: help in root cause analysis for bugs,
fix problems in older versions of software that has been
released, roll back to an older version without newly
introduced bugs

9/28/2017 CUNY | Brooklyn College 14

Centralized vs. Distributed

• Centralized VCS

• Examples: Revision Control System (RCS),
Concurrent versions systems (CVS), Subversion
(SVN)

• Distributed VCS

• Examples: Git, Mercurial (hg)

9/28/2017 CUNY | Brooklyn College 15

Basic VCS Operations

• Check out/update: copying the repository to
the machine you are working at

• Check in/Commit: copying the changes you
made to the repository and creating a new
version

• Branch: create a new “child” development
from a state of the repository

9/28/2017 CUNY | Brooklyn College 16

Example: Centralized Workflow

9/28/2017 CUNY | Brooklyn College 17

commit (check in)

Merge Conflicts

• A conflict may occur when two developers edit
the same file

• Merge

• The developer that tries to commit the file last will
have to combine her changes with those of the prior
developer

• Many VCS’s (e.g., git) may automatically combine the
changes

• Developers may have to merge the changes by hand

9/28/2017 CUNY | Brooklyn College 18

Question: A Merge?

9/28/2017 CUNY | Brooklyn College 19

• How would you revise this graph to illustrate
when a merge is required?

Distributed Version Control

• Possible to commit locally without upsetting
the others

• Allow more flexibility and support different
kinds of workflow

9/28/2017 CUNY | Brooklyn College 20

Example: Distributed Workflow

9/28/2017 CUNY | Brooklyn College 21

commits commits

Remote Repository

Questions

• Course policy and organization

• Assignments

• Assignments submission via Git and Github

2/1/2018 CUNY | Brooklyn College 22

Operating System

2/1/2018 CUNY | Brooklyn College 23

System Hardware

Operating System

Application 1 Application 2 Application N

App User 1 App User M

User View:
System Interface

(System Calls)

App User Interface

System View:
Resource
Allocation

Concept of Operating Systems

• A large piece of software function as

• an extended machine (user view)

• to provide an “beautiful” interface for application
programs via the application developers

• a resource manager (system view)

• to provide a “beautiful” allocation scheme to share the
processors, memories, and I/O devices in a “computer
system”

2/1/2018 CUNY | Brooklyn College 24

“beautiful”

• Question & Discussion: what is “beautiful”?

2/1/2018 CUNY | Brooklyn College 25

Various Computer Systems

2/1/2018 CUNY | Brooklyn College 26

So, lots of computers …

• Question and discussion: what are in common
and what are different?

2/1/2018 CUNY | Brooklyn College 27

Major Hardware Components

• Processors (CPU)

• Multithreaded and multicore processors

• Main Memory (Memory)

• Secondary Memory (Disks)

• I/O Devices

• Buses

2/1/2018 CUNY | Brooklyn College 28

CPU

Bus

Memory
I/O

Devices

Processors

2/1/2018 CUNY | Brooklyn College 29

ALU

Program Counter (PC)

Stack Pointer

Program Status Word (PSW)

Other Registers 1

Other Registers nCache

Kernel mode:
can execute all
instructions
and access all
hardware
features

User mode: can
execute subset
of instructions
and access
subset of
hardware
features

Instructions

• Basic cycle

• Fetch, decode, execute

• Enhance: e.g., pipelining

• Instruction set

• Examples

• x86 (i386 for 32-bit; amd64 for 64-bit)

• ARM

2/1/2018 CUNY | Brooklyn College 30

Fetch Decode Execute

Fetch Decode Execute

Memory Hierarchy

2/1/2018 CUNY | Brooklyn College 31

Secondary Memory (e.g., Magnetic Disk)

Main Memory

Cache

Registers

~10ms

~10ns

~2ns

~1ns

~TB

~GB

~MB

<KB

I/O

• Busy waiting

• Interrupted I/O

• Direct memory access (DMA)

2/1/2018 CUNY | Brooklyn College 32

Operating Systems

• Mainframe Operating Systems

• Server Operating Systems

• Multiprocessor Operating Systems

• Personal Computer Operating Systems

• Handheld Computer Operating Systems

• Embedded Operating Systems

• Sensor-Node Operating Systems

• Real-Time Operating Systems

• Smart Card Operating Systems

2/1/2018 CUNY | Brooklyn College 33

So, a zoo of operating systems?

• Question: why? How are they differ?

2/1/2018 CUNY | Brooklyn College 34

Design Goals

• Resource utilization

• Timeliness

• Throughput

• Robustness

• Energy efficiency

2/1/2018 CUNY | Brooklyn College 35

Operating Systems Concepts

• Processes

• Address spaces

• Files

• I/O

• Protection

• The Shell

• The Kernel

• System Calls

2/1/2018 CUNY | Brooklyn College 36

Process

• A program in execution

• Address space

• Divided into a few parts: e.g., stack, heap, program
code, program data

• Resources

• List of open files

• List of related processes

• Current working directory

2/1/2018 CUNY | Brooklyn College 37

Systems Research Literature

• Digital Libraries

• ACM, IEEE, and USENIX

• Google Scholar

• The Computer Systems subcategory

• List of researches in Section 1.9

2/1/2018 CUNY | Brooklyn College 38

Computing Research

• Computation is synthetic

• Different from natural sciences, such as, biology and
physics

• We create and study artifacts – must show the
artifacts are “better”

• Two paradigms

• Theory and experimentation

• Theory: Similar to mathematics of an abstract phenomena

• Experimentation: Property of artifacts

• System research are largely experimental.

2/1/2018 CUNY | Brooklyn College 39

“Better” Property

• Examples

• “solves a problem in less time”

• “solves a larger class of problems”

• “is more efficient of resources”

• “is more expressive by some criterion”

• “is more visually appealing in the case of
graphics”

• “presents a totally new capability”

2/1/2018 CUNY | Brooklyn College 40

What Makes it Better?

• The “better” property is not simply an
observation

• More about postulating that a new idea that
something fundamental leads to the “better”
result

• Examples

• Data structure, algorithm, language, mechanism,
process, representation, protocol, methodology,
optimization or simplification, and model

2/1/2018 CUNY | Brooklyn College 41

Research and Practice

• “Research” is broadly defined.

• In practice, the same principle applies

• When you design a system solution, is it because
this is the first design that comes to your mind
or it is a better design?

2/1/2018 CUNY | Brooklyn College 42

Questions

• Overview of operating systems

• Concept

• Hardware

• Operating systems concepts

• Systems research

2/1/2018 CUNY | Brooklyn College 43

Assignments

• Gain hands-on experience and familiarity
with operating systems concepts

• Submission required

• Familiar yourself with digital libraries and
Google Scholar

2/1/2018 CUNY | Brooklyn College 44

Quick Poll

• Do you have a laptop that you can bring to
the class (on some days)?

2/1/2018 CUNY | Brooklyn College 45

Questions

• Policy and organization of the course

• Overview of operating systems

• Assignments

• See the class website for due dates

• Descriptions are in Blackboard

2/1/2018 CUNY | Brooklyn College 46

