## Design Theory Normalization and Normal Forms

Hui Chen<sup>a</sup>

<sup>a</sup>CUNY Brooklyn College, Brooklyn, NY, USA

March 27, 2025

#### Outline

#### Recap and Motivation

#### 2 Normalization

- 1NF
- 2NF
- 3NF
- BCNF
- Operation Properties of Decomposition
- 4 Summary

#### 5 Assignment

2 / 50

#### Outline

#### Recap and Motivation

#### 2 Normalization

- 1NF
- 2NF
- 3NF
- BCNF
- 3 Properties of Decomposition
- 4 Summary

#### 5 Assignment

3 / 50

#### Overview



## A Design Challenge

There are a variety of ways that we can design relational schema – there is a space for improvement.

- ▶ Problem. we are trying to combine too much into one relation → maintenance problems called *anomaly*.
- ▶ Problem. we are trying to create to many relations → difficult to answer queries or retrieve the data

How do we identify such design problem and make improvements? – a design trade-off must be made.

- A well developed theory dependencies and normalization
- Normalization the process of converting a relation into a normal form.
  - The process usually consists of decomposing a table into two or more tables with fewer attributes
  - When normalizing relations, we are generally sacrificing retrieval speed to prevent data maintenance problems – a trade-off

H. Chen (CUNY-BC)

Normalization

#### Outline

1 Recap and Motivation

#### 2 Normalization

- 1NF
- 2NF
- 3NF
- BCNF
- 3 Properties of Decomposition
- 4 Summary

#### 5 Assignment

#### Vormalization

#### Normalization

- Redundancy in the database may lead to anomalies.
- The normalization is a technique to reduce redundancy.
  - It is a decomposition process to split tables up, so that the relation is in a normal form.
  - The splitting is performed carefully so that no information is lost
  - There different level of normal forms, the higher the normal form is, the lower the redundancy.

#### Normal Forms

Normal forms build on each other

- First Normal Form (1NF)
- Second Normal Form (2NF)
- Third Normal Form (3NF)
- Boyce-Codd Normal Form (BCNF)
- Fourth Norm Form (4NF) not to discuss, on your own
- Fifth Norm Form (5NF/PJNF) not to discuss, on your own
- ► N. Domain-Key Normal Form (DKNF)

 not to discuss, on your own
Note that a relation in a higher normal form is always in a lower normal (observe the Venn diagram).

We limit the discussion to 1NF – BCNF.



## First Normal Form (1NF)

1NF: A relation R is in first normal form (1NF) if and only if all underlying domains contain atomic values only

What does this mean?

- No duplicate rows Each table has a key: minimal set of attributes which can uniquely identify a record
- No multi-value attributes allowed The values in each column of a table are atomic, i.e., no table of tables.
- There are no repeating groups two columns do not store similar information in the same table.

### Example 1: 1NF or not?

| EMPLID     | Name  | Course   | Grades |
|------------|-------|----------|--------|
| 1112223333 | Sasha | CISC3810 | А      |
| 1112223333 | Sasha | CISC3810 | А      |

### Example 1: 1NF or not?

| EMPLID     | Name  | Course   | Grades |
|------------|-------|----------|--------|
| 1112223333 | Sasha | CISC3810 | А      |
| 1112223333 | Sasha | CISC3810 | А      |

Not in 1NF! Because it violates

No duplicate rows – Each table has a key: minimal set of attributes which can uniquely identify a record

## Example 2: 1NF or not?

| EMPLID     | Name  | Grades | Courses           |
|------------|-------|--------|-------------------|
| 1112223333 | Sasha | A,B    | CISC3115,CISC3810 |
| 1112224444 | John  | B,A    | CISC3171,CISC3810 |

### Example 2: 1NF or not?

| EMPLID     | Name  | Grades | Courses           |
|------------|-------|--------|-------------------|
| 1112223333 | Sasha | A,B    | CISC3115,CISC3810 |

Not in 1NF! It violates,

No multi-value attributes allowed – The values in each column of a table are atomic, i.e., no table of tables.

## Example 3: 1NF or Not

| EMPLID     | Name  | Course1  | Course2  | Grade1 | Grade2 |
|------------|-------|----------|----------|--------|--------|
| 1112223333 | Sasha | CISC3115 | CISC3810 | А      | В      |
| 1112224444 | John  | CISC3171 | CISC3810 | В      | А      |

## Example 3: 1NF or Not

| EMPLID     | Name  | Course1  | Course2  | Grade1 | Grade2 |
|------------|-------|----------|----------|--------|--------|
| 1112223333 | Sasha | CISC3115 | CISC3810 | А      | В      |
| 1112224444 | John  | CISC3171 | CISC3810 | В      | А      |

#### Not in 1NF! It violates,

There are no repeating groups – two columns do not store similar information in the same table.

### Issues with Relations not in 1NF

What issues could there be with regard to the relations not in 1NF?

Can these happen and under what scenario?

- Insertion anomaly
- Deletion anomaly
- Update anomaly

16 / 50

#### Is the following relation in 1NF?

| InvNo | InvDate  | CustNo | CustName | ItemNo | ItemName | ItemPrice | Qty |
|-------|----------|--------|----------|--------|----------|-----------|-----|
| 1001  | 04/04/22 | 212    | Will     | 1      | Screw    | 199       | 5   |
| 1001  | 04/04/22 | 212    | Will     | 3      | Bolt     | 399       | 5   |
| 1001  | 04/04/22 | 212    | Will     | 5      | Washer   | 99        | 9   |
| 1002  | 04/11/22 | 225    | Chris    | 1      | Screw    | 199       | 10  |
| 1002  | 04/11/22 | 225    | Chris    | 2      | Nut      | 499       | 6   |
| 1003  | 04/11/22 | 240    | Lee      | 1      | Screw    | 199       | 4   |
| 1003  | 04/11/22 | 240    | Lee      | 2      | Nut      | 499       | 3   |
| 1004  | 04/12/22 | 218    | Latasha  | 4      | Hammer   | 999       | 8   |

- Does it have redundant data?
  - What FDs hold?
  - What are super keys and keys?
- What anomalies may occur?

#### Issues with Relations in 1NF

- A table in 1NF may have redundant data.
- A table in 1NF does not show data consistency and integrity in the long run due to the anomalies.

# Second Normal Form (2NF)

2NF: A relation R is in second normal form (2NF) if and only if it is in 1NF and every non-key attribute is *fully* dependent on the key

What does this mean?

- All requirements for 1NF must be met.
- FD holds: key  $\rightarrow$  non-key attributes
- FD should not holds: part of key  $\rightarrow$  part of non-key attributes

## Example: 1NF, 2NF, or Neither?

| EMPLID     | Name    | Course#   | CourseName | Credit | Grade |
|------------|---------|-----------|------------|--------|-------|
| 1112223333 | Amy     | CISC 1115 | Java I     | 5      | А     |
| 1112223334 | Latasha | CISC 3115 | Java II    | 4      | А     |

## Example: 1NF, 2NF, or Neither?

| EMPLID     | Name    | Course#   | CourseName | Credit | Grade |
|------------|---------|-----------|------------|--------|-------|
| 1112223333 | Amy     | CISC 1115 | Java I     | 5      | А     |
| 1112223334 | Latasha | CISC 1115 | Java I     | 5      | В     |
| 1112223334 | Latasha | CISC 3115 | Java II    | 4      | А     |

▶ 1NF but not 2NF. Why?

## Example: 1NF, 2NF, or Neither?

| EMPLID     | Name    | Course#   | CourseName | Credit | Grade |
|------------|---------|-----------|------------|--------|-------|
| 1112223333 | Amy     | CISC 1115 | Java I     | 5      | А     |
| 1112223334 | Latasha | CISC 1115 | Java I     | 5      | В     |
| 1112223334 | Latasha | CISC 3115 | Java II    | 4      | А     |

- INF but not 2NF. Why?
- ► Key:  $\{EMPLID, Course\#\}$ , which means,  $\{EMPLID, Course\#\} \rightarrow \{Name, CourseName, Credit\}$
- ▶ FD holds, but it should not  $Course \# \rightarrow \{CourseName, Credit\}$ since  $\{Course \#\} \subset \{EMPLID, Course \#\}$  and  $\{CourseName, Credit\} \subset \{Name, CourseName, Credit, Grade\}$ :

## Normalizing 1NF to 2NF

Convert 1NF to 2NF

- Redundant data across multiple rows of a table must be moved to a separate table.
- The resulting tables must be related to each other by use of foreign key.

# Example: Normalizing 1NF to 2NF

| EMPLID     | Name    | Course#   | CourseName | Credit | Grade |
|------------|---------|-----------|------------|--------|-------|
| 1112223333 | Amy     | CISC 1115 | Java I     | 5      | А     |
| 1112223334 | Latasha | CISC 1115 | Java I     | 5      | В     |
| 1112223334 | Latasha | CISC 3115 | Java II    | 4      | А     |

| EMPLID                                 | Name                      | Course#                             | Grade       | Course#                | CourseName        | Credit |
|----------------------------------------|---------------------------|-------------------------------------|-------------|------------------------|-------------------|--------|
| 1112223333<br>1112223334<br>1112223334 | Amy<br>Latasha<br>Latasha | CISC 1115<br>CISC 1115<br>CISC 3115 | A<br>B<br>A | CISC 1115<br>CISC 3115 | Java I<br>Java II | 5<br>4 |

## Example: Normalizing 1NF to 2NF

Is there any additional way to normalize the following relation in 1NF to those in 2NF?

| EMPLID     | Name    | Course#   | CourseName | Credit | Grade |
|------------|---------|-----------|------------|--------|-------|
| 1112223333 | Amy     | CISC 1115 | Java I     | 5      | А     |
| 1112223334 | Latasha | CISC 1115 | Java I     | 5      | В     |
| 1112223334 | Latasha | CISC 3115 | Java II    | 4      | А     |

### Summary

| Normal Form | Characteristics                                                                      |
|-------------|--------------------------------------------------------------------------------------|
| 1NF<br>2NF  | simple table, no repeating groups, and PK identified 1NF and no partial dependencies |

## Issues with Relations in 2NF

Is the following relation in 2NF? The relation is about invoices and customers of a business. The business assigns invoice number uniquely and each customer gets a unique customer number.

| <u>InvNo</u> | InvDate  | CustNo | CustName |
|--------------|----------|--------|----------|
| 1001         | 04/02/22 | 212    | Will     |
| 1002         | 04/03/22 | 233    | Amy      |
| 1003         | 04/03/22 | 244    | Lee      |
| 1004         | 04/04/22 | 285    | Emma     |

- Does it have redundant data?
  - What FDs hold?
  - What are super keys and keys?
- What anomalies may occur?

## Issues with Relations in 2NF

Is the following relation in 2NF? The relation is about invoices and customers of a business. The business assigns invoice number uniquely and each customer gets a unique customer number.

| <u>InvNo</u> | InvDate  | CustNo | CustName |
|--------------|----------|--------|----------|
| 1001         | 04/02/22 | 212    | Will     |
| 1002         | 04/03/22 | 233    | Amy      |
| 1003         | 04/03/22 | 244    | Lee      |
| 1004         | 04/04/22 | 285    | Emma     |

2NF: key is InvNo; although  $CustNo \rightarrow CustName$ ,  $\{CustNo\} \not\subset \{InvNo\}$ 

- ▶ The following FDs holds among the others:  $InvNo \rightarrow CustNo$  and  $CustNo \rightarrow CustName$
- Update anomaly: updating CustNo but forgetting to update CustName will cause inconsistency

H. Chen (CUNY-BC)

Normalization

### Issues with Relations in 2NF

A relation in 2NF may satisfy the following property,

▶ transitive dependency: C is transitively dependent on A if there exists B such that:  $A \rightarrow B$  and  $B \rightarrow C$ .

As a result, update/delete anomaly may occur when some attribute is transitively depends on the key.

29 / 50

# Third Normal Form (3NF)

A relation R is in third normal form (3NF) if and only if it is in 2NF and every non-key attribute is non-transitively dependent on the key.

What does this mean?

- All requirements for 2nd NF must be met.
- Given key K, there does not exist A and B where  $K \neq A$ ,  $K \neq B$ , and  $A \neq B$  such that  $K \rightarrow A$  and  $A \rightarrow B$

## Normalizing 2NF to 3NF

Convert 2NF to 3NF

- Eliminate fields that transitively depend on the key;
- that is, any field that is dependent not only on the key but also on another non-key field must be moved to another table.
- The resulting tables must be related to each other by use of foreign key.

# Example: Normalizing 2NF to 3NF

| <u>InvNo</u> | InvDate  | CustNo | CustName |
|--------------|----------|--------|----------|
| 1001         | 04/02/22 | 212    | Will     |
| 1002         | 04/03/22 | 233    | Amy      |
| 1003         | 04/03/22 | 244    | Lee      |
| 1004         | 04/04/22 | 285    | Emma     |

 $\downarrow$ 

| <u>InvNo</u> | InvDate  | CustNo | - | CustNo | CustName |
|--------------|----------|--------|---|--------|----------|
| 1001         | 04/02/22 | 212    | - | 212    | Will     |
| 1002         | 04/03/22 | 233    |   | 233    | Amy      |
| 1003         | 04/03/22 | 244    |   | 244    | Lee      |
| 1004         | 04/04/22 | 285    |   | 285    | Emma     |

### Summary

| Normal Form       | Characteristics                                                                                                         |
|-------------------|-------------------------------------------------------------------------------------------------------------------------|
| 1NF<br>2NF<br>3NF | simple table, no repeating groups, and PK identified 1NF and no partial dependencies 2NF and no transitive dependencies |

Consider a database for scheduling college classes and we have a relation as follows,

| Building | Room | StartTime | EndTime | Instructor |
|----------|------|-----------|---------|------------|
| IH       | 1121 | 11:00     | 12:15   | Amy        |
| IH       | 1121 | 09:30     | 10:45   | Will       |
| IA       | 325  | 09:30     | 10:45   | John       |
| IA       | 325  | 11:00     | 12:15   | Will       |

Is this relation in 3NF?

Consider a database for scheduling college classes and we have a relation as follows,

| Building | Room | StartTime | EndTime | Instructor |
|----------|------|-----------|---------|------------|
| IH       | 1121 | 11:00     | 12:15   | Amy        |
| IH       | 1121 | 09:30     | 10:45   | Will       |
| IA       | 325  | 09:30     | 10:45   | John       |
| IA       | 325  | 11:00     | 12:15   | Will       |

Is this relation in 3NF?

- Is this relation in 1NF
- Is this relation in 2NF
- Is this relation in 3NF

Consider a database for scheduling college classes and we have a relation as follows,

| Building | Room | StartTime | EndTime | Instructor |
|----------|------|-----------|---------|------------|
| IH       | 1121 | 11:00     | 12:15   | Amy        |
| IH       | 1121 | 09:30     | 10:45   | Will       |
| IA       | 325  | 09:30     | 10:45   | John       |
| IA       | 325  | 11:00     | 12:15   | Will       |

Is this relation in 1NF?  $\checkmark$ 

- No duplicate rows keys?
  - Building, Room, StartTime (why?)
  - Building, Room, EndTime (why?)
  - StartTime, Instructor (why?)
  - EndTime, Instructor (why?)
- Similar columns (no multi-valued attributes)?
- No repeating groups?

Consider a database for scheduling college classes and we have a relation as follows,

| Building | Room | StartTime | EndTime | Instructor |
|----------|------|-----------|---------|------------|
| IH       | 1121 | 11:00     | 12:15   | Amy        |
| IH       | 1121 | 09:30     | 10:45   | Will       |
| IA       | 325  | 09:30     | 10:45   | John       |
| IA       | 325  | 11:00     | 12:15   | Will       |

#### Is this relation in 2NF? $\checkmark$

- No partial dependencies? The following FD's are not partial FD's because the determinants (left-hand-sides) are keys and there does not exist a non-trivial FD whose determinant is a proper subset of the determinants and the determinant functionally determines a non-key attribute.
  - Building, Room, StartTime → Building, Room, StartTime, EndTime, Instructor
  - ▶ Building, Room, EndTime → Building, Room, StartTime, EndTime, Instructor
  - StartTime, Instructor  $\rightarrow$  Building, Room, StartTime, EndTime, Instructor
  - ► EndTime, Instructor → Building, Room, StartTime, EndTime, Instructor

Consider a database for scheduling college classes and we have a relation as follows,

| Building | Room | StartTime | EndTime | Instructor |
|----------|------|-----------|---------|------------|
| IH       | 1121 | 11:00     | 12:15   | Amy        |
| IH       | 1121 | 09:30     | 10:45   | Will       |
| IA       | 325  | 09:30     | 10:45   | John       |
| IA       | 325  | 11:00     | 12:15   | Will       |

Is this relation in 3NF?  $\checkmark$ 

transitive dependency? – Is there is a non-key attribute that depends on something other than a key?

Consider a database for scheduling college classes and we have a reliation as follows,

| Building | Room | StartTime | EndTime | Instructor |
|----------|------|-----------|---------|------------|
| IH       | 1121 | 11:00     | 12:15   | Amy        |
| IH       | 1121 | 09:30     | 10:45   | Will       |
| IA       | 325  | 09:30     | 10:45   | John       |
| IA       | 325  | 11:00     | 12:15   | Will       |

Is this relation in 3NF?  $\checkmark$ 

- Although the following FD's exist, Instructor is not a key and the right-hand-sides are part of keys – there does not exist a transitive FD.
  - Instructor → {Building, Room, StartTime}
  - ▶ Instructor  $\rightarrow$  {Building, Room, EndTime}

Consider a database for scheduling college classes and we have a relation as follows,

| Building | Room | StartTime | EndTime | Instructor |
|----------|------|-----------|---------|------------|
| IH       | 1121 | 11:00     | 12:15   | Amy        |
| IH       | 1121 | 09:30     | 10:45   | Will       |
| IA       | 325  | 09:30     | 10:45   | John       |
| IA       | 325  | 11:00     | 12:15   | Will       |

#### Is this relation in 3NF? $\checkmark$

- But due to the existence of these FD's
  - Instructor → {Building, Room, StartTime}
  - Instructor  $\rightarrow$  {Building, Room, EndTime}
- If we change an instructor's name without checking on meeting location and time for the rows for the instructor, there is a chance we put the instructor at two locations at the same time!
- That is an update anomaly!

## Boyce-Codd Normal Form (BCNF)

A relation R is in Boyce-Codd normal form (BCNF) if for every nontrivial functional dependency  $X \rightarrow A$  where X is a key of R.

What does this mean?

 Anything but the key – no attribute depends on anything other than a key (excluding trivial dependencies)

## Normalizing 3NF to BCNF

Convert 3NF to BCNF

- ▶ To put the relation in BCNF, create a separate table based on the functional dependency  $X \rightarrow$  that violates BCNF.
- For this example, remove (Instructor, Building, Room, StartTime) to a separate relation.
- Or remove (Instructor, Building, Room, EndTime) to a separate relation.
- Use the foreign key constraint to Link the two relations

## Example: Normalizing 3NF to BCNF

| Building | Room | StartTime | EndTime | Instructor |
|----------|------|-----------|---------|------------|
| IH       | 1121 | 11:00     | 12:15   | Amy        |
| IH       | 1121 | 09:30     | 10:45   | Will       |
| IA       | 325  | 09:30     | 10:45   | John       |
| IA       | 325  | 11:00     | 12:15   | Will       |

#### $\downarrow$

| Building | Room | StartTime | EndTime | Building | Room | StartTime | Instructor |
|----------|------|-----------|---------|----------|------|-----------|------------|
| IH       | 1121 | 11:00     | 12:15   | IH       | 1121 | 11:00     | Amy        |
| IH       | 1121 | 09:30     | 10:45   | IH       | 1121 | 09:30     | Will       |
| IA       | 325  | 09:30     | 10:45   | IA       | 325  | 09:30     | John       |
| IA       | 325  | 11:00     | 12:15   | IA       | 325  | 11:00     | Will       |

### Outline

1 Recap and Motivation

#### 2 Normalization

- 1NF
- 2NF
- 3NF
- BCNF
- Operation Properties of Decomposition
  - 4 Summary

#### 5 Assignment

### Properties of Decomposition

Discussed a property of decomposition

- Elimination of Anomalies
  - Decompose a relation to normal forms to reduce redundancies; which reduces chances of anomalies.

Not discussed what other properties we should have – You should continue to explore these on your own.

- Recoverability of information can we recover the original relation from the tuples in its decomposition?
- Preservation of dependencies can we satisfy the original functional dependencies when we reconstruct the original relation from the decomposition by joining?

## Comparison of Normal Forms

Also explore more on your own

| Property                               | 3NF    | BCNF   | 4NF    |
|----------------------------------------|--------|--------|--------|
| Eliminate redundancy due to FD's       | $No^2$ | Yes    | Yes    |
| Eliminates redundancy due to $MVD's^1$ |        | No     | Yes    |
| Preserves FD's                         | Yes    | $No^3$ | $No^3$ |
| Preserves MVD's $^4$                   | No     | No     | No     |

- <sup>1</sup>: MVD multivalued dependencies
- <sup>2</sup>: Although "No", 3NF is often enough to eliminate this redundancy.

 $^3\colon$  BCNF does not guarantee preservation of FD's, but in typical cases (or often) the dependencies are preserved.

 $^4$ : None of the normal forms guarantee preservation of MVD's, although in typical cases (often), the dependencies are preserved.

46 / 50

#### Outline

1 Recap and Motivation

#### 2 Normalization

- 1NF
- 2NF
- 3NF
- BCNF
- 3 Properties of Decomposition

#### 4 Summary

#### 5 Assignment

47 / 50

#### Summary

| Normal Form | Characteristics                                      |
|-------------|------------------------------------------------------|
| 1NF         | simple table, no repeating groups, and PK identified |
| 2NF         | 1NF and no partial dependencies                      |
| 3NF         | 2NF and no transitive dependencies                   |
| BCNF        | Every determinant is a key (nothing but the key)     |

On your own

Properties of decomposition

#### Outline

1 Recap and Motivation

#### 2 Normalization

- 1NF
- 2NF
- 3NF
- BCNF
- 3 Properties of Decomposition

#### 4 Summary

#### 5 Assignment

### Assignment

Let's work on an assignment using paper and pencil/pen ...