Data Model

Hui Chen a

^aCUNY Brooklyn College, Brooklyn, NY, USA

February 1, 2022

Data Models

Data Modeling

Data Models

Data Modeling

Data Modeling and Data Models

- ▶ Model: simple reprenstation of complex real-world objects and events
- Data Model: simple/mathematical representation of complex real-world data structures, useful for supporting a specific problem domain
- Data modeling: the process of creating a specific data model for a determined problem domain

Data Model Components

- Mathematical representation of the structure of data
 - Entity: person, place, thing, or event about which data will be collected and stored
 - Attribute: characteristic of an entity
 - ► Relationship: association among entities
 - Multiplicity: One-to-many (1:M OR 1..*), Many-to-many (M:N or *..*), and One-to-one (1:1 OR 1..1)
- Operations: a limited set of operations that can be performed on the data
- Constraint: restriction placed on data, such as, what the data can be
 - Ensures data integrity

Types of Data Models

Time	Data Model	Examples DBMS	Comments
1960s, 1970s	File System	VMS/SAM	Used mainly on IBM mainframe systems; managed records, not relationships
1970s	Hierarchical and network	IMS, ADABAS, IDS-II	Early database systems; navigational access
Mid-1970s	Relational	DB2, Oracle MS SQL Server, MySQL	Conceptual simplicity; Entity Relationship (ER) modeling and support for relational data modeling
Mid-1980s	Object- oriented; Object/Rela- tional(O/R)	Versant, Objectivity/DB, DB2 UDB, Oracle 12c	Object/relational supports object data types; Star Schema support for data warehousing; Web databases become common
Mid-1990s	XML Hybrid DBMS	dbXML, Tamino, DB2 UDB, Oracle 12c, MS SQL Server	Unstructured data support; O/R model supports XML documents; Hybrid DBMS adds object front end to relational databases; Support large databases (terabyte size)
Early 2000s to present	Key-value store; Col- umn store	SimpleDB (Amazon), BigTable (Google), Cassandra (Apache), MongoDB, Riak	Distributed, highly scalable; High performance, fault tolerant; Very large storage (petabytes); Suited for sparse data; Proprietary application programming interface (API)

Data Models

Data Modeling

Data Modeling

- Discovering business rules
- Translating business rules into data model components

Discover Business Rules

Identify and document business rules to create an accurate data model

- Understand and standardize an organization'ss view of data
 - ▶ Understand the nature, role, scope of data, and business processes
 - Develop appropriate relationship participation rules and constraints

Translating Business Rules into Data Model Components

Based on business rules, identify entities, attributes, relationships, and constraints

- Nouns translate into entities
- Verbs translate into relationships among entities
 - ► Relationships are bidirectional
 - Questions to identify the relationship type
 - ► How many instances of B are related to one instance of A?
 - ► How many instances of A are related to one instance of B?

Data Models

2 Data Modeling

Entity-Relationship Model Building Blocks

- Entity sets
- Attriutes, and
- Reltionships

Entity Sets

An entity is an abstract object of some sort, and a collection of similar entities forms an *entity set*.

- Example: let's design a movie database (from whom?)
 - What are the nouns?
 - Each movie is an entity, and the set of all movies constitutes an entity set
 - ► Call the entity set Movies
 - Each movie star (actor or actress) is an entity, the set of all movie starts is an entity set
 - ► Call the entity set Stars
- Question: let's consider a database for an educational institution
 - ▶ What are examples of entity and entity set?

Attributes

Entity sets have associated attributes, which are properties of the entities in that set.

- Example: let's continue to design the movie database
- What attributes can entity set Movies and Stars have?
- Discussion: Are the attributes of primitive data types?

Relationships

Relationships are connections among two or more entity sets.

- Example: let's continue to design the movie database
- What are the verbs?
- Entity sets Movies and Stars can have a relationship called Stars-in
- ▶ Entity sets Studios and Movies can have a relationship called Owns

Entity-Relationship Diagrams

An Entity-Relationship Diagram (E-R Diagram) is a graph representing entity sets, attributes, and relationships. There are three popular notations to represent the graph.

- Chen notation (by Peter Chen)
- Crow's Foot notation
- UML notation

In this class, we shall follow Chen notation.

To be continued . . .