Simple Internetworking: Overview and IP Packet Format

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

Outline

- Topic: internetworking
 - Case study: Internet Protocol (IP) Suite
- Simple interworking
 - Overview of internet and the Internet
 - IP packet format
 - Global addressing scheme
 - Best effort service model and datagram forwarding
 - Packet fragmentation and assembly
 - Address translation
 - Host configuration
 - Error reporting

Heterogeneity and Scalability

- LAN: small in size
- How to extend LAN?
 - Bridges and switches
 - Good for global networks?
 - Spanning tree algorithms → very long path and huge forwarding tables
 - Bridges and switches: link level/layer 2 devices → networks must be using the same type of links
- Problems to deal with
 - Scalability: global networks are huge in size
 - Heterogeneity: networks of different types of links are in use

Network of Networks: internetworking

An arbitrary collection of networks interconnected to provide some sort of host-host to packet delivery service

Solution to Scalability: Network of Networks

Forwarding packets to networks from networks: smaller forwarding tables
 Network 4 (Ethernet)

Solution to Heterogeneity: layered architecture and hourglass design

 Network layer encapsulates the heterogeneity and the complexity of data link and physical layers (or the host-to-network layer)

Network Layer and Lower Layers

Internet Protocol

- IP = Internet Protocol
- Key tool used today to build scalable, heterogeneous internetworks
 - Routers forward packets to "networks": forwarding tables can be smaller
 - Above link layer: can cope with different link layer technology

IP Service Model: Application of Datagram Switching

- Packet Delivery Model
 - Connectionless model for data delivery
 - Best-effort delivery (unreliable service)
 - packets may be lost
 - packets may be delivered out of order
 - duplicate copies of a packet may be delivered
 - packets may be delayed for a long time
- Global Addressing Scheme
 - Provides a way to identify all hosts in the network
- Datagram switching
 - Forward packets to networks

IP: Application of Datagram Switching

- Forward packets to networks
 - How do we define networks?
- Essential data structure: IP packet format
- Global addressing schemes
- Datagram forwarding

Basic Data Structure: IP Packet

- Design Goals
 - Attributes and purposes
 - Support error detection and handling
 - Support networks as a forwarding source and destinations
 - Support different networking technologies
 - Support multiplexing
 - Support extensibility

IP Packet Format

- Discussing IP version 4 (IPv4). Discussing IP version 6 (IPv6) in later lessons
 - Convention used to illustrate IP packet
 - 32 bit words
 - Top word transmit first
 - Left-most byte transmit first

IPv4 Packet Format

- Version (4): 4 or 6. The rest is for version 4.
 Discussing 6 in later lessons
- Hlen (4): number of 32-bit words in header
- TOS (8): type of service (not widely used)
- Length (16): number of bytes in this datagram
- Ident (16): used by fragmentation
- Flags/Offset (16): used by fragmentation
- TTL (8): number of hops this datagram has traveled
- Protocol (8): demux key (TCP=6, UDP=17)
- Checksum (16): of the header only
- DestAddr & SrcAddr (32)

IPv4 Packet Format: Essential Problems and Solutions

- The packet is designed to address a few essential problems:
- Scalability and Heterogeneity problems:
 - IP datagram forward: application of datagram switching
 - Fields: SourceAddr, DestinationAddr, Length
- Heterogeneity problem
 - Packet fragmentation
 - Fields: Ident, Flags, Offset, Length
- Quality of service and serving upper layers
 - TOS, Protocol
- Error detection
 - Checksum
- Extensibility
 - Version, HLen, Optional Fields

Capturing an IP Packet

• And examining it ...

IP Packet

A Captured IP Packet

₽	Scapy	v2.4.	4														_		×	(
>>>	>>> hexdump(packet)																\mathbf{h}			
000	0 0	3 0() 27	08	0D	A 1	08	00	27	CB	67	1D	08	00	45	00	''.gE.			
001	0 0	21	L 00	01	00	00	40	00	64	D8	A 0	01	01	02	A0	01	.!@.d			
002	0 0	L 01	L 48	65	6C	6C	6F	2C	20	57	6F	72	6C	64	21	00	Hello, World!.			
003	0 0) 0(00 00	00	00	00	00	00	00	00	00	00								
>>>																				\sim

Ethernet Protocol Numbers

Exercise 1

- Below shows a captured Ethernet frame
 - Q1: what is the length in bytes of the largest IP packet?
 - Q2: what is the length in bytes of the smallest IP packet?
 - Q3: what are the values (bits) of each field in the IP packet below (underlined). Which byte is the last byte of this IP packet?

0000	00	23	ae	7b	49	11	00	13	72	8f	ba	11	08	00	45	nn
0010	00	28	78	41	40	00	80	06	fe	d4	c0	a8	01	34	c0	a 8
0020	01	35	07	e3	00	16	b6	cO	0a	da	b6	1e	1a	b7	50	10
0030	f1	80	aO	30	00	00	00	00	00	00	00	00				

Summary

- Overview of Internetworks and simple Internet
- IP packet format
 - Packet format
 - Overview of problems and solutions

Summary: Essential Problems and Solutions

- Global internetworks built on IP \rightarrow The Internet \neq internet
- Using Internet Protocol (IP) as a case study
 - IP packet format
 - Global IP addressing scheme
 - Datagram forwarding and service model
 - Deal with Link layer and network layer interfacing
 - Packet fragmentation and assembly
 - Address translation
 - Other important issues
 - Host configuration
 - Error reporting