Introduction to Packet Switching

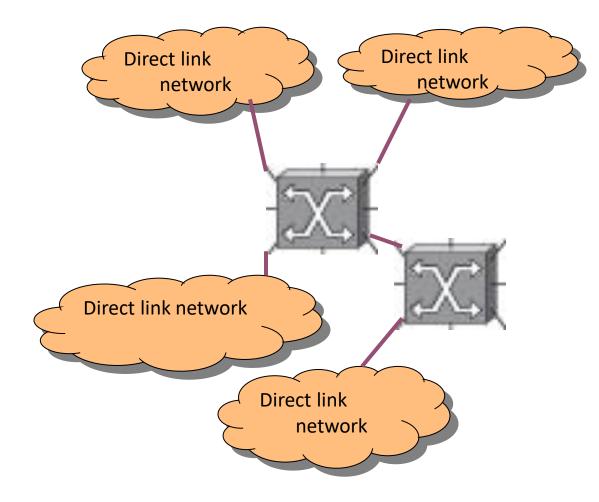
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

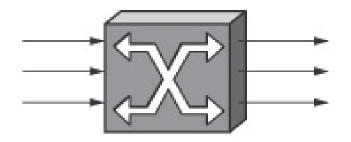
• What have we discussed so far?

- Design objectives of computer networks
 - General purpose
 - Cost-effective network sharing
 - Fair network link allocation
 - Robust connectivity
- Building computer networks from ground-up: direct link networks
 - Smallest network
 - Problems to solve
 - Encoding
 - Framing
 - Error detection and correction
 - Reliable delivery
 - Media access control
 - Example
 - Ethernet


- Building computer networks from ground-up: direct link networks
 - Smallest network
 - Problems to solve
 - Encoding
 - Framing
 - Error detection and correction
 - Reliable delivery
 - Media access control
 - Example
 - Ethernet
- What are the limitations of the direct link networks?

- Building computer networks from ground-up: direct link networks
 - Smallest network
 - Problems to solve
 - Encoding
 - Framing
 - Error detection and correction
 - Reliable delivery
 - Media access control
 - Example
 - Ethernet
- What are the limitations of the direct link networks?
 - Scalability (Size): how many users can the network accommodate?
 - Heterogeneity: how do we connect different types of direct link networks?

Lecture Outline


- Addressing the scalability problem: design scalable networks
- Mechanism (algorithms): switching
 - Datagram switching
 - Virtual Circuit
 - Source routing

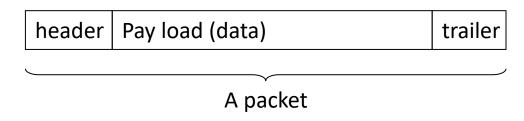
The Design: Switched Networks

Switches

- Special node that forwards packets/frames
 - Multiple-input-multiple-output devices
 - Forward packets/frames from input port to output port
 - Switches can connect to each others
 - Output port selected based on destination address in packet/frame header
 - Provide high aggregate throughput
 - Layer 2 switches
 - Each link runs data link protocol

Switches

- Think about how telephone networks (circuit-switched networks) work
 - How switching (data forwarding) is performed?
 - A physical circuit is established \rightarrow someone has to help you.
 - Someone = a real person or a computer
 - The circuit is dedicated to one connection
 - Each link can be shared (multiplex) a fixed number of connections (TDM or FDM)


Central office distribution frame

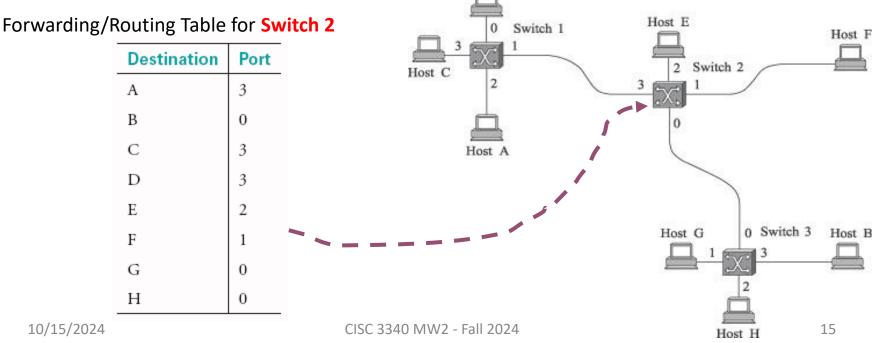
Computer networks are packet switched networks Data are divided into frames/packets

Still, one has to decide which port (of a link) to forward a frame/packet

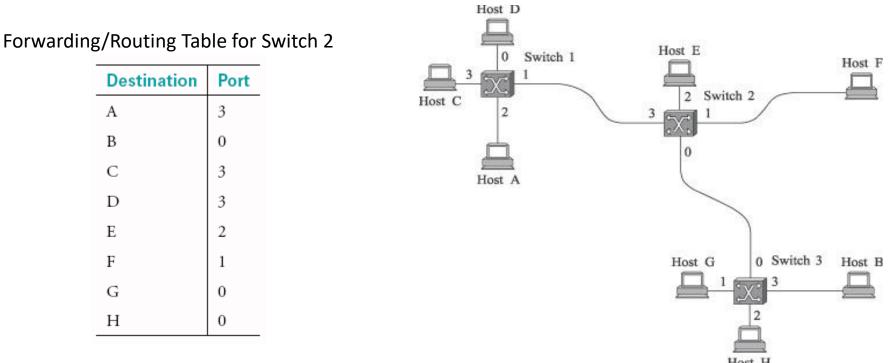
Packet-switched Networks

- Data are divided and sent using *packets*
 - A packet has a header and trailer which contain control information
- Store-and-forward
 - Each packet is passed from node to node along <u>some</u> path through the network
 - At each node, the entire packet is received, stored briefly, and then forwarded to the next node
- Statistical multiplexing
 - No capacity is allocated for packets

Switching Algorithms


• Q: how does a switch decide on which output port (on a link) to place a packet?

Switching Approaches


- Datagram switching
 - Connectionless model
- Virtual circuit switching
 - Connection-oriented model
- Source routing
- Common properties
 - Switches have identifiable ports
 - Hosts/nodes are identifiable

Datagram Switching: Data Structure

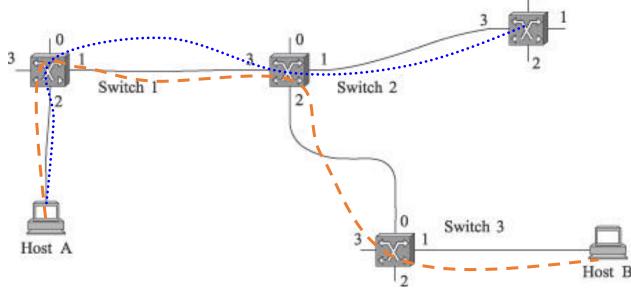
- Each switch maintains a forwarding table
- Frame header contains the identifier of destination node
- Forward packets/frames based on the table
 - Example: if frame header indicates its destination is <u>node B</u>, forward to <u>port 0</u> → done by looking up th

Exercise 1

Construct the forwarding tables for other switches

 (switches 1 & 3)

Datagram Switching: Discussion

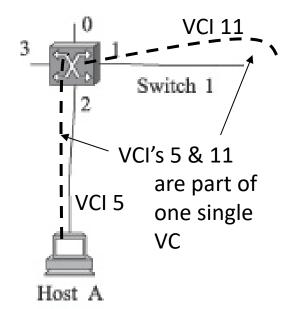

- Each node maintains a forwarding table
- No connection setup
- Hosts/switches sends/forwards packets independently
- Hosts/switches do not know if the network can deliver a packet to its destination
- A switch/link failure might not be catastrophic
 - Find an alternate route and update forwarding table

Virtual Circuit Switching

- Connection-oriented model
 - Connection setup → establish "virtual circuit (VC)"
 - Data transfer \rightarrow subsequent packets follow same circuit
 - Tear down VC
- Each switch maintains a VC table
 - An entry (row) in VC table must have
 - VCI: identify connection at this switch <u>within</u> a link → a different
 VCI will be used for outgoing packets
 - Incoming interface, e.g., a port for receiving packets
 - Outgoing interface, e.g., a port for forwarding packets
- Frame header contains VC number (VCI value) of <u>next link</u> along a VC

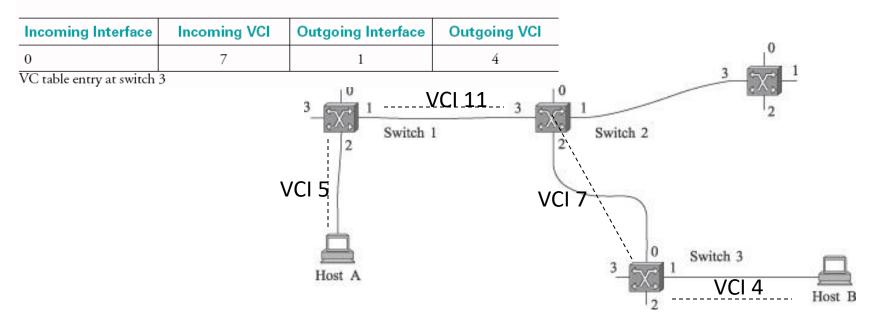
Virtual Circuit Switching: Example

- Example: host A \rightarrow host B
 - Switches needed?
 - switches 1, 2, and 3
 - Network do not explicitly maintain global information about virtual circuits


Two planned virtual circuits in red dashed line and blue dotted line

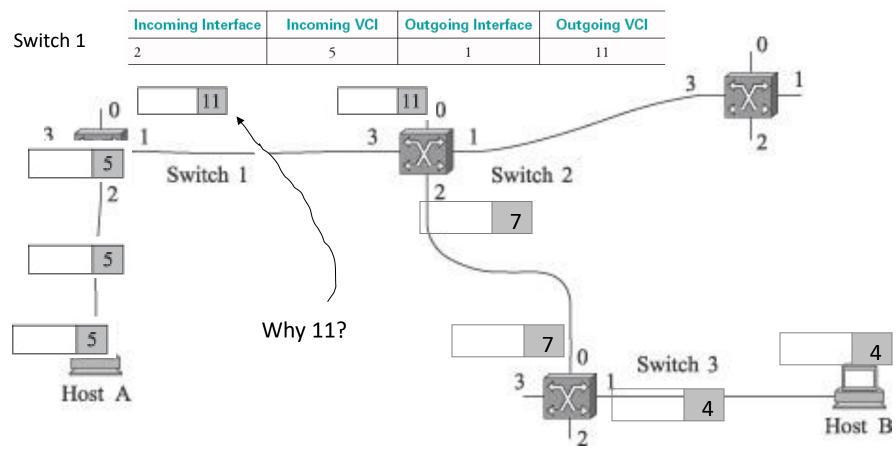
Virtual Circuit Switching: Example: VC Table

- Setup phase (could be performed manually for a network administrator) → permanent VC→ Establish VC table for each switch
- Example: Switch 1
 - When host A sends out a frame, it places the VCI (i.e. 5) of next link into the frame header
 - Switch 1 looks up an entry based on both incoming interface (i.e., 2) and the VCI (i.e., 5) in the frame header to determine outgoing port (i.e., 1) and VCI (i.e., 11)
 - The scope of VCI values is links
 - Unused VCI value on the link (Host A to Switch 1)
 - VCI can be duplicated on different link

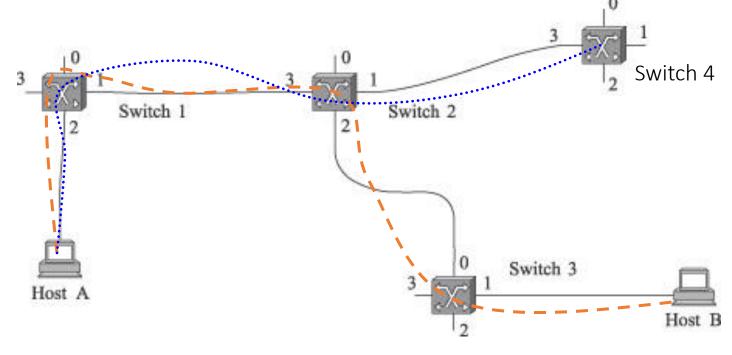

Virtual Circuit Switching: Example: VC Table

Incoming Interface	Incoming VCI	Outgoing Interface	Outgoing VCI
2	5	1	11

Virtual circuit table entry for switch 1


Incoming Interface	Incoming VCI	Outgoing Interface	Outgoing VCI	
3	11	2	7	
VC table anter at write 2				

VC table entry at switch 2


Virtual Circuit Switching: Example

• Host A sends a frame to host B

Exercise 2

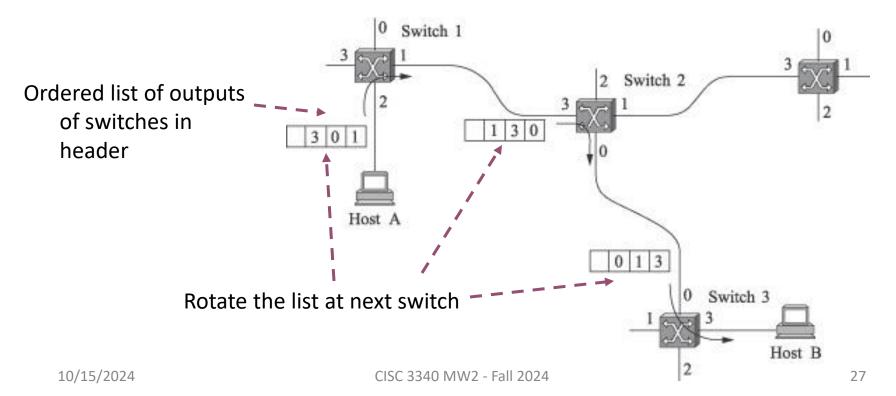
- Construct Virtual Circuit (VC) table entry for all the switches on the Virtual Circuit for both red and blue Virtual Circuits
- List VC tables for switches 1, 2, 3, and 4. You may make necessary assumptions.

Virtual Circuit Switching: Connection Setup

- Connection setup
 - Permanent virtual circuit (PVC): manual configured → unmanageable for great number of nodes
 - Switched virtual circuit (SVC): automatically configured via signaling
 - A process similar to datagram model

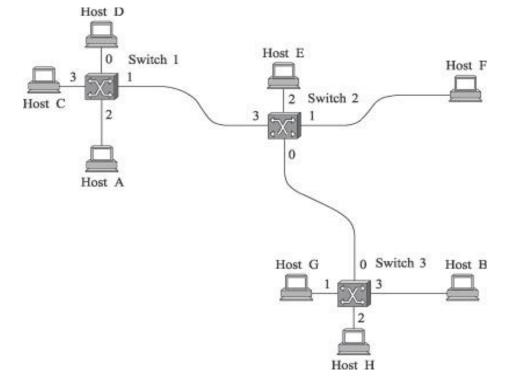
Virtual Circuit: Discussion

- Connection setup takes 1 RTT minimally
- VCI number typically needs less memory space. Per-packet overhead is less than that of the datagram model
- Need VC re-setup in case of a connection failure
- Possible to allocate network resources during VC setup


Comparison of Datagram and Virtual Circuit Switching

- Virtual Circuit
 - Need connection setup
 - Typically wait full RTT for connection setup before sending first data packet.
 - While the connection request contains the full address for destination, each data packet contains only a small identifier, making the per-packet header overhead small.
 - In datagram switching: forwarding table contains entries for every host → large table → more memory, slow lookup
 - Delivery assurance or failure
 - If a switch or a link in a connection fails, the connection is broken and a new one needs to be established.
 - Connection setup provides an opportunity to reserve resources → Quality of Service (QoS)

- Datagram
 - No connection setup
 - There is no RTT delay waiting for connection setup; a host can send data as soon as it is ready.
 - Since every packet must carry the full address of the destination, the overhead per packet is higher than for the connection-oriented model.
 - In virtual circuit switching: VC table contains only "circuits" to be used → smaller table → less memory, fast lookup
 - Delivery assurance or failure
 - Source host has no way of knowing if the network is capable of delivering a packet or if the destination host is even up.
 - Since packets are treated independently, it is possible to route around link and node failures → difficult to satisfy QoS


Source Routing

- Source host knows network topology to deliver a packet/frame
- Source host places output ports of each switch along the route into the frame header
 - Example: Host A sends a frame to host B

Exercise 3

 Assume source routing presented in previous slide is used, show headers of a frame leaves from Host H and arrives at Host D at each switches along the path

Summary

- Switches \rightarrow scalable networks
- Datagram switching
- Virtual circuit switching
- Source routing
- Q: Example in practice?
 - Ethernet