
End-to-End Protocols
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

12/4/2024 CISC 3340 MW2 - Fall 2024 1

Outline

• Problem: the end-to-end communications?

• User Datagram Protocol

• Transmission Control Protocol

12/4/2024 3CISC 3340 MW2 - Fall 2024

Network Applications

Network

• Users make use of networks via network applications at hosts
• A hosts can run many network applications simultaneously
• Each application is one or more running programs (processes)
• Q: How processes share the underlying network layers?

12/4/2024 4CISC 3340 MW2 - Fall 2024

Transport Layer Services and Protocols

• provide logical communication
between application processes
running on different hosts

• transport protocols run in end
systems

• send side
• breaks app messages

into segments, passes to
network layer

• receive side:
• reassembles segments

into messages, passes to
app layer

• more than one transport protocol
available to applications

• Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

12/4/2024 5CISC 3340 MW2 - Fall 2024

Transport vs. Network Layer (1)

• network layer: logical
communication between
hosts

• transport layer: logical
communication between
processes
• relies on, enhances,

network layer services

Household analogy:

12 kids sending letters among
themselves via their parents

• processes = kids

• application messages = letters in
envelopes

• hosts = houses

• transport protocol = Ann and Bill
(parents)

• network-layer protocol = postal
service

12/4/2024 6CISC 3340 MW2 - Fall 2024

Transport vs. Network Layer (2)

• Network layer: Underlying best-
effort network
• drop messages
• re-orders messages
• delivers duplicate copies of a

given message
• limits messages to some

finite size
• delivers messages after an

arbitrarily long delay

• Transport Layer: Common end-
to-end services
• guarantee message delivery
• deliver messages in the

same order they are sent
• deliver at most one copy of

each message
• support arbitrarily large

messages
• support synchronization
• allow the receiver to flow

control the sender
• support multiple application

processes on each host

12/4/2024 7CISC 3340 MW2 - Fall 2024

Internet Transport-Layer Protocols

• Reliable, in-order delivery
(TCP)
• congestion control

• flow control

• connection setup

• Unreliable, unordered
delivery: UDP
• no-frills extension of “best-

effort” IP

• Services not available:
• delay guarantees

• bandwidth guarantees

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

application
transport
network
data link
physical

12/4/2024 8CISC 3340 MW2 - Fall 2024

Multiplexing/Demultiplexing

Host-to-host delivery

vs

process-to-process delivery

12/4/2024 9CISC 3340 MW2 - Fall 2024

Multiplexing/Demultiplexing

= process= socket

delivering received segments
to correct socket

Demultiplexing at rcv host:
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

Multiplexing at send host:

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 1 host 2 host 3

Host-to-host delivery ➔ process-to-process delivery

12/4/2024 9CISC 3340 MW2 - Fall 2024

Simple Demultiplexer (1)

• Need to know to or from which process the data is
sent or come
• Identify processes on hosts

• How to identify processes on hosts?
• Introduce concept of “port”

• Q: why not to use process id?

12/4/2024 10CISC 3340 MW2 - Fall 2024

Processes: Windows Example

12/4/2024 11CISC 3340 MW2 - Fall 2024

Processes: Linux/Unix Example

12/4/2024 12CISC 3340 MW2 - Fall 2024

Simple Demultiplexer (2)

• How to identify processes on hosts?

• Q: why not to use process id?

• Introduce concept of “port”

• Endpoints identified by ports

• servers have well-known ports

• see /etc/services on Unix/Linux

• see C:\WINDOWS\system32\drivers\etc\services on MS
Windows

Process 8 Process 3

Host 2

Process 3 Process 8

12/4/2024 13CISC 3340 MW2 - Fall 2024

Simple Demultiplexer: UDP
• Adds multiplexing to Internet Protocol

• Endpoints identified by ports (UDP ports)

• Demultiplex via ports on hosts

• Nothing more is added
• Unreliable and unordered datagram service

• No flow control

• User Datagram Protocol (UDP)
• A process is identified by <host, port>

• Connectionless model

• Header format

• Optional checksum
• psuedo header + UDP header + data

• pseudo header = protocol number + source IP
address and destination IP address + UDP length
field

From IP header

From UDP header

12/4/2024 14CISC 3340 MW2 - Fall 2024

Exercise 1

• Q1: How many UDP ports are there?

• Q2: How big are UDP headers?

• Q3: How much data does a UDP datagram can carry?

12/4/2024 15CISC 3340 MW2 - Fall 2024

Exercise 2
• What are these two

packets?

• Give fields and field values
for the two packets?

12/4/2024 CISC 3340 MW2 - Fall 2024 16

>>> hexdump(datagram)

WARNING: No IP underlayer to compute checksum. Leaving null.

0000 30 39 D4 31 00 15 00 00 48 65 6C 6C 6F 2C 20 57 09.1....Hello, W

0010 6F 72 6C 64 21 orld!

>>> hexdump(packet)

0000 45 00 00 29 00 01 00 00 40 11 88 A3 C0 A8 38 67 E..)....@.....8g

0010 C0 A8 38 68 30 39 D4 31 00 15 C8 0C 48 65 6C 6C ..8h09.1....Hell

0020 6F 2C 20 57 6F 72 6C 64 21 o, World!

>>>

Transmission Control Protocol (TCP)

• Connection-oriented

• Byte-stream
• applications writes bytes
• TCP sends segments
• applications reads bytes

• Full duplex

• Flow control: keep sender from overrunning
receiver

• Congestion control: keep sender from overrunning
network

12/4/2024 16CISC 3340 MW2 - Fall 2024

Data Link Versus Transport
• Potentially connects many different hosts

• need explicit connection establishment
and termination

• Potentially different RTT
• need adaptive timeout mechanism

• Potentially long delay in network
• need to be prepared for arrival of very old

packets

12/4/2024 17CISC 3340 MW2 - Fall 2024

 Potentially different capacity
at destination

 need to accommodate
different node capacity

 Potentially different network
capacity

 need to be prepared for
network congestion

Segment Format (1)

12/4/2024 18CISC 3340 MW2 - Fall 2024

Segment Format (2)
• Each connection identified with 4-tuple:

• (SrcPort, SrcIPAddr, DsrPort, DstIPAddr)

• Sliding window + flow control
• acknowledgment, SequenceNum, AdvertisedWinow

• Flags
• SYN, FIN, RESET, PUSH, URG, ACK

• Checksum
• pseudo header + TCP header + data

12/4/2024 19CISC 3340 MW2 - Fall 2024

Exercise 3

• What are these packets? What are
the fields and their values?

12/4/2024 CISC 3340 MW2 - Fall 2024 21

>>> hexdump(packet1)

0000 45 00 00 28 00 01 00 00 40 06 64 A9 0A 01 01 03 E..(....@.d.....

0010 0A 01 01 22 C3 50 C3 51 00 00 00 64 00 00 00 64 ...".P.Q...d...d

0020 50 02 20 00 F2 51 00 00 P. ..Q..

>>> hexdump(packet2)

0000 45 00 00 28 00 01 00 00 40 06 64 A9 0A 01 01 03 E..(....@.d.....

0010 0A 01 01 22 C3 50 C3 51 00 00 00 67 00 00 01 4F ...".P.Q...g...O

0020 50 10 20 00 F1 55 00 00 P. ..U..

>>> hexdump(packet3)

0000 45 00 00 3A 00 01 00 00 40 06 64 97 0A 01 01 03 E..:....@.d.....

0010 0A 01 01 22 C3 50 C3 51 00 00 00 67 00 00 01 4F ...".P.Q...g...O

0020 50 18 20 00 12 9B 00 00 47 45 54 20 2F 20 48 54 P.GET / HT

0030 54 50 2F 31 2E 31 0D 0A 0D 0A TP/1.1....

Sequence and Acknowledgement
Numbers (1)

• Host A sends a file of 500,000 bytes over a TCP
connection with Maximum Segment Size (MSS) as
1,000 bytes to host B
• How many segments? 500,000/1,000 = 500

• Sequence number assignments
• Sequence number of 1st segment? 0

• Sequence number of 2nd segment? 1,000

• Sequence number of 3rd segment? 2,000

• ……

12/4/2024 20CISC 3340 MW2 - Fall 2024

Sequence and Acknowledgement
Numbers (2)

• Scenario 1
• Host B received all bytes numbered 0 to 1,999 from host A
• What would host B put in the acknowledgement number field of the segment it sends

to A?
• 2,000: the sequence number of the next byte host B is expecting

• Scenario 2
• Host B received two segments containing bytes from 0-999, and 2,000-2,999,

respectively?
• What would host B put in the acknowledgement number field of the segment it sends

to A?
• 1000: TCP only acknowledges bytes up to the first missing byte in the stream, and it is the

next byte host B is expecting

• Scenario 3
• Host B received 1st segment containing bytes from 0-999. Somehow, next it received

3rd segment containing bytes from 2,000-2,999.
• What does host B in this case that the segments arrive out of order?

• TCP does not specify how to deal with this situation. Hence, it is up to the implementation.
• Option 1: Host B immediately discards out-of-order segment → simple receiver design

• Option 2: Host B keeps the out-of-order segment and waits for missing bytes to fill in the gaps → more
efficient on bandwidth utilization → taken in practice

12/4/2024 21CISC 3340 MW2 - Fall 2024

TCP is Connection-Oriented

• Keep track of states of receiver and sender
• Connection Establishment

• Connection Termination

• TCP finite state machine and state transition

12/4/2024 22CISC 3340 MW2 - Fall 2024

Connection Establishment

12/4/2024 23CISC 3340 MW2 - Fall 2024

Connection Termination

client server

close

close

closed

ti
m

e
d
 w

ai
t

12/4/2024 24CISC 3340 MW2 - Fall 2024

State Transition Diagram

Same State

12/4/2024 25CISC 3340 MW2 - Fall 2024

Connection Establishment and State Transition

12/4/2024 CISC 3340 MW2 - Fall 2024 26

client

Connection Establishment and State Transition

12/4/2024 CISC 3340 MW2 - Fall 2024 26

client

Connection Establishment and State Transition

client12/4/2024 CISC 3340 MW2 - Fall 2024 26

client

Connection Establishment and State Transition

server

client12/4/2024 CISC 3340 MW2 - Fall 2024 26

client

Connection Establishment and State Transition

server

client server12/4/2024 CISC 3340 MW2 - Fall 2024 26

client

Connection Establishment and State Transition

server

client

closed

server12/4/2024 CISC 3340 MW2 - Fall 2024 26

client

Connection Establishment and State Transition

server

client

closed

server

closed

12/4/2024 CISC 3340 MW2 - Fall 2024 26

client

Connection Establishment and State Transition

server

client

closed

server

closed
Action: passive open

12/4/2024 CISC 3340 MW2 - Fall 2024 26

client

Connection Establishment and State Transition

server

client

closed

server

listen
Action: passive open

12/4/2024 CISC 3340 MW2 - Fall 2024 26

client

Connection Establishment and State Transition

server

client

closed

server

listen
Action: passive openAction: active open

12/4/2024 CISC 3340 MW2 - Fall 2024 26

client

Connection Establishment and State Transition

server

client

closed

server

listen
Action: passive openAction: active open

12/4/2024 CISC 3340 MW2 - Fall 2024 26

client

Connection Establishment and State Transition

server

client server

listen
Action: passive open

SYN_SENT

Action: active open

12/4/2024 CISC 3340 MW2 - Fall 2024 26

client

Connection Establishment and State Transition

server

client server

listen
Action: passive open

SYN_SENT

Action: active open

12/4/2024 CISC 3340 MW2 - Fall 2024 26

client

Connection Establishment and State Transition

server

client server

SYN_SENT

SYN_RECV

Action: active open

12/4/2024 CISC 3340 MW2 - Fall 2024 26

client

Connection Establishment and State Transition

server

client server

SYN_SENT

SYN_RECV

Action: active open

12/4/2024 CISC 3340 MW2 - Fall 2024 26

client

Connection Establishment and State Transition

server

client server

SYN_SENT

SYN_RECV

Action: active open

12/4/2024 CISC 3340 MW2 - Fall 2024 26

client

Connection Establishment and State Transition

server

client server

SYN_RECV

Established

Action: active open

12/4/2024 CISC 3340 MW2 - Fall 2024 26

client

Connection Establishment and State Transition

server

client server

SYN_RECV

Established

Action: active open

12/4/2024 CISC 3340 MW2 - Fall 2024 26

client

Connection Establishment and State Transition

server

client server

SYN_RECV

Established

Action: active open

12/4/2024 CISC 3340 MW2 - Fall 2024 26

client

Connection Establishment and State Transition

server

client server

Established

Established

Action: active open

12/4/2024 CISC 3340 MW2 - Fall 2024 26

Connection Termination and State Transition (1)
server

closed

client

ti
m

e
d
 w

ai
t

Client closes first

12/4/2024 CISC 3340 MW2 - Fall 2024 27

Connection Termination and State Transition (1)
server

closed

client

ti
m

e
d
 w

ai
t

Client closes first

12/4/2024 CISC 3340 MW2 - Fall 2024 27

Connection Termination and State Transition (1)
server

closed

client

ti
m

e
d
 w

ai
t

Client closes first

12/4/2024 CISC 3340 MW2 - Fall 2024 27

Connection Termination and State Transition (1)
server

close

closed

client

ti
m

e
d
 w

ai
t

Client closes first

12/4/2024 CISC 3340 MW2 - Fall 2024 27

Connection Termination and State Transition (1)
server

close

closed

client

ti
m

e
d
 w

ai
t

Client closes first

12/4/2024 CISC 3340 MW2 - Fall 2024 27

Connection Termination and State Transition (1)
server

close

closed

client

ti
m

e
d
 w

ai
t

Client closes first

12/4/2024 CISC 3340 MW2 - Fall 2024 27

Connection Termination and State Transition (1)
server

close

closed

client

ti
m

e
d
 w

ai
t

Client closes first

12/4/2024 CISC 3340 MW2 - Fall 2024 27

Connection Termination and State Transition (1)
server

close

closed

client

ti
m

e
d
 w

ai
t

Client closes first

12/4/2024 CISC 3340 MW2 - Fall 2024 27

Connection Termination and State Transition (1)
server

close

closed

client

ti
m

e
d
 w

ai
t

Client closes first

12/4/2024 CISC 3340 MW2 - Fall 2024 27

Connection Termination and State Transition (1)
server

close

closed

client

ti
m

e
d
 w

ai
t

Client closes first

12/4/2024 CISC 3340 MW2 - Fall 2024 27

Connection Termination and State Transition (1)
server

close

closed

client

ti
m

e
d
 w

ai
t

Client closes first

12/4/2024 CISC 3340 MW2 - Fall 2024 27

Connection Termination and State Transition (1)
server

close

close

closed

client

ti
m

e
d
 w

ai
t

Client closes first

12/4/2024 CISC 3340 MW2 - Fall 2024 27

Connection Termination and State Transition (1)
server

close

close

closed

client

ti
m

e
d
 w

ai
t

Client closes first

12/4/2024 CISC 3340 MW2 - Fall 2024 27

Connection Termination and State Transition (1)
server

close

close

closed

client

ti
m

e
d
 w

ai
t

Client closes first

12/4/2024 CISC 3340 MW2 - Fall 2024 27

Connection Termination and State Transition (1)
server

close

close

closed

client

ti
m

e
d
 w

ai
t

Client closes first

12/4/2024 CISC 3340 MW2 - Fall 2024 27

Connection Termination and State Transition (1)
server

close

close

closed

client

ti
m

e
d
 w

ai
t

Client closes first

12/4/2024 CISC 3340 MW2 - Fall 2024 27

Connection Termination and State Transition (1)
server

close

close

closed

client

ti
m

e
d
 w

ai
t

Client closes first

12/4/2024 CISC 3340 MW2 - Fall 2024 27

Connection Termination and State Transition (1)
server

close

close

closed

client

ti
m

e
d
 w

ai
t

Client closes first

12/4/2024 CISC 3340 MW2 - Fall 2024 27

Connection Termination and State Transition (1)
server

close

close

closed

client

ti
m

e
d
 w

ai
t

Client closes first

12/4/2024 CISC 3340 MW2 - Fall 2024 27

Connection Termination and State Transition (1)
server

close

close

closed

client

ti
m

e
d
 w

ai
t

Client closes first

12/4/2024 CISC 3340 MW2 - Fall 2024 27

Connection Termination and State Transition
(2)

• This side closes first
• ESTABLISHED → FIN_WAIT_1 → FIN_WAIT_2 →

TIME_WAIT

• Other side closes first
• ESTABLISHED → CLOSE_WAIT → LAST_ACK → CLOSED

• Both sides close at the same time
• ESTABLISHED → FIN_WAIT_1 → CLOSING → TIME_WAIT
→ CLOSED

12/4/2024 28CISC 3340 MW2 - Fall 2024

TCP Sliding Window: Why Different?

• Potentially connects many different hosts
• need explicit connection establishment

and termination

• Potentially different RTT
• need adaptive timeout mechanism

• Potentially long delay in network
• need to be prepared for arrival of very old

packets

12/4/2024 29CISC 3340 MW2 - Fall 2024

 Potentially different capacity at destination
◼ need to accommodate different node

capacity

 Potentially different network capacity
◼ need to be prepared for network

congestion

TCP Sliding Window: Reliable and
Ordered Delivery

• Sending side
• LastByteAcked LastByteSent

• LastByteSent LastByteWritten

• buffer bytes between LastByteAcked and
LastByteWritten

Receiving side
LastByteRead < NextByteExpected
NextByteExpected LastByteRcvd +1
buffer bytes betweenNextByteRead and

LastByteRcvd

TCP uses cumulative acknowledgements to acknowledge receiving of all the bytes up
to the first missing byte

12/4/2024 30CISC 3340 MW2 - Fall 2024

TCP Flow Control (1)
• receive side of TCP connection has a

receive buffer

• app process may be slow at reading
from buffer

• speed-matching service: matching
the send rate to the receiving app’s
drain rate

sender won’t overflow
receiver’s buffer by

transmitting too much,
 too fast

flow control

12/4/2024 31CISC 3340 MW2 - Fall 2024

TCP Flow Control (2)
• Send buffer size: MaxSendBuffer

• Receive buffer size: MaxRcvBuffer

• Receiving side
• LastByteRcvd - LastByteRead MaxRcvBuffer
• AdvertisedWindow = MaxRcvBuffer – ((NextByteExpected -1) -

LastByteRead)) → maximum possible free space remaining in the buffer

• Sending side
• LastByteSent - LastByteAcked AdvertisedWindow

• LastByteSent – LastByteAcked: unacknowledged bytes sender has put in TCP

• Otherwise, the sender may overrun the receiver

• EffectiveWindow = AdvertisedWindow - (LastByteSent -LastByteAcked) →
how much data it can sent

• LastByteWritten - LastByteAcked MaxSendBuffer
• If the sender tries to write y bytes to TCP

• block sender if (LastByteWritten - LastByteAcked) + y > MaxSenderBuffer

• Always send ACK in response to arriving data segment

• Persist when AdvertisedWindow = 0
12/4/2024 32CISC 3340 MW2 - Fall 2024

Flow Control and Buffering (3)

Dynamic buffer allocation. The arrows show the direction of transmission. An ellipsis (…)
indicates a lost TCP segment

12/4/2024 33CISC 3340 MW2 - Fall 2024

Adaptive Retransmission: Original
Algorithm

• Measure SampleRTT for each segment/ACK pair

• Compute weighted average of RTT
• EstimatedRTT = α x EstimatedRTT + β x SampleRTT

• where α + β = 1
• α between 0.8 and 0.9

• β between 0.1 and 0.2

• Set timeout based on EstimatedRTT
• TimeOut = 2 x EstimatedRTT

12/4/2024 34CISC 3340 MW2 - Fall 2024

Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT

12/4/2024 35CISC 3340 MW2 - Fall 2024

Adaptive Retransmission:
Karn/Partridge Algorithm

• Do not sample RTT when retransmitting

• Double timeout after each retransmission
• Congestion is the most likely cause of lost segments → TCP should not react too aggressively to a timeout

Problem with original algorithm
ACK does not really acknowledge a transmission, it acknowledges the receipt of data → can not
distinguish an ACK is for which transmission/retransmission of a segment

12/4/2024 36CISC 3340 MW2 - Fall 2024

Jacobson/ Karels Algorithm

• Previous approaches did not take the variance of the sample RTT into account
• If no variance, Estimated RTT is good enough, 2 Estimated RTT is too

pessimistic
• If variance large, timeout value should not be too dependent on Estimated RTT

• New Calculations for average RTT
• Difference = SampleRTT – EstimtaedRTT

• EstimatedRTT = EstimatedRTT + (δ x Difference)

• Deviation = Deviation + δ(|Difference| - Deviation)
• where δ is a factor between 0 and 1

• Consider variance when setting timeout value
• TimeOut = μ x EstimatedRTT + φ x Deviation

• where μ = 1 and φ = 4

• Notes
• algorithm only as good as granularity of clock (500ms on Unix)

• accurate timeout mechanism important to congestion control

12/4/2024 37CISC 3340 MW2 - Fall 2024

TCP: Sequence Number Wrap Around

12/4/2024 38CISC 3340 MW2 - Fall 2024

TCP: Can Keep Pipe Full?

12/4/2024 39CISC 3340 MW2 - Fall 2024

Solution: TCP Extensions
• Implemented as header options

• Store timestamp in outgoing
segments → measure RTT

• Extend sequence space with 32-bit
timestamp → protected against
sequence number wrap-around

• Shift (scale) advertised window →
keep the pipe full

• Selective acknowledgement (SAC)
→ acknowledge any additional
(out-of-order) blocks of received
data

TCP Extensions for High Performance
 http://tools.ietf.org/html/rfc1323

12/4/2024 40CISC 3340 MW2 - Fall 2024

http://tools.ietf.org/html/rfc1323

Summary

• User Datagram Protocol
• Multiplexer/Demultiplexer for IP

• Transmission Control Protocol
• Reliable Byte Stream

• Connection-oriented
• Connection establishment
• Connection termination

• Automatics Repeated-Request: ACKs and NACKs
• Flow-control
• Timeout value estimation
• Extensions

• Congestion control (another classs?)

12/4/2024 41CISC 3340 MW2 - Fall 2024

	Slide 1: End-to-End Protocols
	Slide 2: Outline
	Slide 3: Network Applications
	Slide 4: Transport Layer Services and Protocols
	Slide 5: Transport vs. Network Layer (1)
	Slide 6: Transport vs. Network Layer (2)
	Slide 7: Internet Transport-Layer Protocols
	Slide 8: Multiplexing/Demultiplexing
	Slide 9: Multiplexing/Demultiplexing
	Slide 10: Simple Demultiplexer (1)
	Slide 11: Processes: Windows Example
	Slide 12: Processes: Linux/Unix Example
	Slide 13: Simple Demultiplexer (2)
	Slide 14: Simple Demultiplexer: UDP
	Slide 15: Exercise 1
	Slide 16: Exercise 2
	Slide 17: Transmission Control Protocol (TCP)
	Slide 18: Data Link Versus Transport
	Slide 19: Segment Format (1)
	Slide 20: Segment Format (2)
	Slide 21: Exercise 3
	Slide 22: Sequence and Acknowledgement Numbers (1)
	Slide 23: Sequence and Acknowledgement Numbers (2)
	Slide 24: TCP is Connection-Oriented
	Slide 25: Connection Establishment
	Slide 26: Connection Termination
	Slide 27: State Transition Diagram
	Slide 28: Connection Establishment and State Transition
	Slide 29: Connection Establishment and State Transition
	Slide 30: Connection Establishment and State Transition
	Slide 31: Connection Establishment and State Transition
	Slide 32: Connection Establishment and State Transition
	Slide 33: Connection Establishment and State Transition
	Slide 34: Connection Establishment and State Transition
	Slide 35: Connection Establishment and State Transition
	Slide 36: Connection Establishment and State Transition
	Slide 37: Connection Establishment and State Transition
	Slide 38: Connection Establishment and State Transition
	Slide 39: Connection Establishment and State Transition
	Slide 40: Connection Establishment and State Transition
	Slide 41: Connection Establishment and State Transition
	Slide 42: Connection Establishment and State Transition
	Slide 43: Connection Establishment and State Transition
	Slide 44: Connection Establishment and State Transition
	Slide 45: Connection Establishment and State Transition
	Slide 46: Connection Establishment and State Transition
	Slide 47: Connection Establishment and State Transition
	Slide 48: Connection Termination and State Transition (1)
	Slide 49: Connection Termination and State Transition (1)
	Slide 50: Connection Termination and State Transition (1)
	Slide 51: Connection Termination and State Transition (1)
	Slide 52: Connection Termination and State Transition (1)
	Slide 53: Connection Termination and State Transition (1)
	Slide 54: Connection Termination and State Transition (1)
	Slide 55: Connection Termination and State Transition (1)
	Slide 56: Connection Termination and State Transition (1)
	Slide 57: Connection Termination and State Transition (1)
	Slide 58: Connection Termination and State Transition (1)
	Slide 59: Connection Termination and State Transition (1)
	Slide 60: Connection Termination and State Transition (1)
	Slide 61: Connection Termination and State Transition (1)
	Slide 62: Connection Termination and State Transition (1)
	Slide 63: Connection Termination and State Transition (1)
	Slide 64: Connection Termination and State Transition (1)
	Slide 65: Connection Termination and State Transition (1)
	Slide 66: Connection Termination and State Transition (1)
	Slide 67: Connection Termination and State Transition (1)
	Slide 68: Connection Termination and State Transition (2)
	Slide 69: TCP Sliding Window: Why Different?
	Slide 70: TCP Sliding Window: Reliable and Ordered Delivery
	Slide 71: TCP Flow Control (1)
	Slide 72: TCP Flow Control (2)
	Slide 73: Flow Control and Buffering (3)
	Slide 74: Adaptive Retransmission: Original Algorithm
	Slide 75: Example RTT estimation:
	Slide 76: Adaptive Retransmission: Karn/Partridge Algorithm
	Slide 77: Jacobson/ Karels Algorithm
	Slide 78: TCP: Sequence Number Wrap Around
	Slide 79: TCP: Can Keep Pipe Full?
	Slide 80: Solution: TCP Extensions
	Slide 81: Summary

