End-to-End Protocols

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College

Outline

* Problem: the end-to-end communications?
e User Datagram Protocol
* Transmission Control Protocol

Network Applications

Transport Layer Services and Protocols

* provide logical communication

application
trans-ort

between application processes e —
running on different hosts c;?\-;iili
. ’ (o)
* transport protocols run in end =
systems
* send side

* breaks app messages
into segments, passes to
network layer

* receive side:

* reassembles segments
into messages, passes to

app layer

* more than one transport protocol
available to applications A= 5 g

* Internet: TCP and UDP

12/4/2024 CISC 3340 MW?2 - Fall 2024 5

Transport vs. Network Layer (1)

logical
communication between
hosts

logical
communication between
processes

* relies on, enhances,
network layer services

12/4/2024 CISC 3340 MW2 -

Household analogy:

12 kids sending letters among
themselves via their parents

* processes = kids

e application messages = letters in
envelopes

* hosts = houses

* transport protocol = Ann and Bill
(parents)

* network-layer protocol = postal
service

Fall 2024 6

Transport vs. Network Layer (2)

* Network layer: Underlying best- * Transport Layer: Common end-
effort network to-end services
* drop messages e guarantee message delivery
* re-orders messages e deliver messages in the
* delivers duplicate copies of a same order they are sent
given message deliver at most one copy of
* |limits messages to some each message
finite size e support arbitrarily large
 delivers messages after an messages
arbitrarily long delay * support synchronization

allow the receiver to flow
control the sender

support multiple application
processes on each host

Internet Transport-Layer Protocols

* Reliable, in-order delivery
(TCP)
e congestion control
* flow control
* connection setup

application
transport

* Unreliable, unordered

delivery: UDP network
. . “ hysical
* no-frills extension of “best- s
effort” IP —|
. . dm‘a‘link B
e Services not available: it) physical network mnspm
ara in networ
* delay guarantees @ , L physicd Em
 bandwidth guarantees Be ‘G y= @

12/4/2024 CISC 3340 MW?2 - Fall 2024 8

Multiplexing/Demultiplexing

Host-to-host delivery

process-to-process delivery

Multiplexing/Demultiplexing

Host-to-host delivery €= process-to-process delivery

Demultiplexing at rcv host: — Multiplexing at send host: _
delivering received segments gathering data from multiple
to correct socket sockets, enveloping data with

header (later used for

demultiplexin
[1 = socket O = process plexing)

applica’rion application application
transport] 'mmglpﬁ? transport
hetwork hei \J/ork network
link link link
physical physical physical

12/4/2024 CISC 3340 MW?2 - Fall 2024 9

Simple Demultiplexer (1)

* Need to know to or from which process the data is
sent or come

* |dentify processes on hosts

* How to identify processes on hosts?
* Introduce concept of “port”
* Q: why not to use process id?

Processes: Windows Example

= Task Manager — O K
File Options View

Processes Performance App history Startup Users Details Services

MName a PID Status User name CPU Memory (ac... UAC virtualizati.. »
rAdobe CEF Helper.exe 9272 Running hui 00 1,984 K Disabled
) Adobe CEF Helperexe 1592 Running hui 00 6,860 K Disabled
r'Adobe CEF Helperexe 10252 Running hui 00 2,304 K Disabled
[Adobe CEF Helperexe 10808 Running hui 00 1.728 K Disabled
[Adobe Desktop Servi.. 9292 Running hui 0 Command Prompt - O X
& AdobelPCBrokerexe 9924 Running hui

#-| AdobeUpdateService.. 3464 Running

8| AggregatorHost.exe 6656 Running
= AGMService.exe 3500 Running
B AGSService.exe 3492 Running
u:| AMPWatchDog.exe 3472 Running bz e
B armsvc.exe 3456 Running Hezs K
" audiodg.exe 12920 Running ces K
[cClibrary.exe 8760 Running hui vices K
[cCxProcess.exe 2012 Running hui 'CES [
= clientidentifier.exe 960 Running e £ “
Bl cmd.exe 5312 Running hchen - ‘ii ::
Bl cmd.exe 5356 Running hchen cés 5 K
5| conhost.exe 636 Running ices K
"] conhost.exe 2808 Running le K
Bl conhost.exe 4836 Running hui a ices K
Bl conhost.exe 10976 Running hui i = i , le K
B8 ronhnst eve 1NN72_ Runnino hrhan prmlist @ ces l‘
svchost.exe ces 4
Fewer details svchost.exe vices K
ces K
1172 Console K
1188 Cc le K
1208 Services K
1248 vices K

Processes: Linux/Unix Example

_unbound]

events power efficient]

Simple Demultiplexer (2)

* How to identify processes on hosts?
* Q: why not to use process id?
* Introduce concept of “port”
* Endpoints identified by ports
* servers have well-known ports
* see /etc/services on Unix/Linux

* see C:\WINDOWS\system32\drivers\etc\services on MS
Windows

Process 8 1‘ : ------ . |_Process 3
||

Process 3 /| Process 8
= o -~ -=

Host 2

12/4/2024 CISC 3340 MW?2 - Fall 2024

13

Simple Demultiplexer: UDP

* Adds multiplexing to Internet Protocol 0 16 31
* Endpoints identified by ports (UDP ports) SrcPort DstPort
* Demultiplex via ports on hosts Length Checksum
* Nothing more is added Data
* Unreliable and unordered datagram service r\/\//\/\/\/\\/\;\\//\\/\/\/\/\

* No flow control

e User Datagram Protocol (UDP)
* A process is identified by <host, port>
e Connectionless model

* Header format
* Optional checksum
* psuedo header + UDP header + data

* pseudo header = protocol number + source IP
address and destination IP address + UDP length
field — From UDP header

12/4/2024 CISC 3340 MW?2 - Fall 2024 14

— » From IP header

Exercise 1

16

31

SrcPort

DstPort

Length

Checksum

PN A N/ NN

Data

 Q1: How many UDP ports are there?
* Q2: How big are UDP headers?

* Q3: How much data does a UDP datagram can carry?

12/4/2024

CISC 3340 MW?2 - Fall 2024

15

0 4 8 16 19 31

Version | HLen ‘ TOS Length
E ° 2 TTL ‘ Protocol | Checksum
Xe rC I S e SourceAddr
» What are these two L
paCkEtS? S I PN g
* Give fields and field values 0 . N
for the two packets? SroPort DstPort
Length Checksum
Data

(W
>>> hexdump (datagram)

WARNING: No IP underlayer to compute checksum. Leaving null.
0000 30 39 D4 31 00 15 00 00 48 65 6C 6C 6F 2C 20 57 09.1....Hello, W

0010 oF 72 6C 64 21 orld!

>>> hexdump (packet)

0000 45 00 00 29 00 01 OO OO 40 11 88 A3 CO A8 38 67 E..)....Q@..... 89
0010 CO A8 38 68 30 39 D4 31 00 15 C8 0OC 48 65 6C oC ..8h09.1....Hell
0020 oF 2C 20 57 6F 72 6C 64 21 o, World!

>>>

12/4/2024 CISC 3340 MW?2 - Fall 2024 16

Transmission Control Protocol (TCP)

* Connection-oriented

* Byte-stream

* applications writes bytes
* TCP sends segments
* applications reads bytes

* Full duplex

* Flow control: keep sender from overrunning
receiver

e Congestion control: keep sender from overrunning
network

Data Link Versus Transport

* Potentially connects many different hosts O
* need explicit connection establishment

Potentially different capacity
at destination

and termination O need to accommodate
: : different node capacit
* Potentially different RTT _ _ pacity
. : O Potentially different network
* need adaptive timeout mechanism ,
capacity
* Potentially Iong delay in network O needtobe prepared for
* need to be prepared for arrival of very old network congestion
packets — —
.ﬂ!:_l_plimti:m]:lrm:rf.'é .fl.:_]J]:c.atjnn Pmcf@
I IO
L 1 Write] Read
: bytes ! bytes
1]
TCP TCP
[Receive buffer]
f]
[Segment | | Segment | --- [Segment |

Transmit segments

Segment Format (1)

12/4/2024

0 4

10 16

31

SrcPort

DstPort

SequenceNum

Acknowledgment

HdrLen

0

Flags AdvertisedWindow

Checksum

UrgPtr

Options (variable)

Data

AN AN —

CISC 3340 MW?2 - Fall 2024

18

Segment Format (2)

Each connection identified with 4-tuple:
* (SrcPort, SrcIPAddr, DsrPort, DstIPAddr)

Sliding window + flow control
* acknowledgment, SequenceNum, AdvertisedWinow

Flags
* SYN, FIN, RESET, PUSH, URG, ACK

Checksum
* pseudo header + TCP header + data

Data (SequenceNum)

/ T
Sender Receiver

~_ -

Acknowledgment +
AdvertisedWindow

Exercise 3

 What are these packets? What are
the fields and their values?

>>> hexdump (packetl)

0000 45 00 00 28 00
0010 0OA 01 01 22 C3
0020 50 02 20 00 F2

>>> hexdump (packet?2)

0000 45 00 00 28 00
0010 OA 01 01 22 C3
0020 50 10 20 00 F1
>>> hexdump (packet3)
0000 45 00 00 3A 00
0010 OA 01 01 22 C3
0020 50 18 20 00 12
0030 54 50 2F 31 2E

12/4/2024

01
50
51

01
50
55

01
50
9B
31

00
C3
00

00
C3
00

00
C3
00
0D

00
51
00

00
51
00

00
51
00
0A

40
00

40
00

40
00
477
0D

06
00

06
00

06
00
45
OA

64
00

64
00

64
00
54

A9
64

A9
67

97
67
20

OA
00

OA
00

OA
00
2F

CISC 3340 MW?2 - Fall 2024

0

4

10 16

31

SrcPort

DstPort

SequenceNum

Acknowledgment

HdrLen 0 Flags AdvertisedWindow
Checksum UrgPtr
Options (variable)

Data
N N A —
01 01 03 E..(....@.d.....
00 00 o4 ".P.Q...d...d

P ..0..

01 01 03 E..(....@.d.....
00 01 4F ".P.Q...g...0
P .U.

01 01 03 E..:.... @.d.....
00 01 4F ...".P.Q...g...0
20 48 54 P. GET / HT
TP/1.1

21

Sequence and Acknowledgement
Numbers (1)

* Host A sends a file of 500,000 bytes over a TCP
connection with Maximum Segment Size (MSS) as
1,000 bytes to host B

 How many segments? 500,000/1,000 = 500

e Sequence number assignments
e Sequence number of 15t segment? O
* Sequence number of 2" segment? 1,000
* Sequence number of 3@ segment? 2,000

Sequence and Acknowledgement
Numbers (2)

* Scenario 1l
* Host B received all bytes numbered 0 to 1,999 from host A

* What would host B put in the acknowledgement number field of the segment it sends

to A?
e 2,000: the sequence number of the next byte host B is expecting

* Scenario 2
* Host B received two segments containing bytes from 0-999, and 2,000-2,999,
respectively?
* What would host B put in the acknowledgement number field of the segment it sends
to A?
* 1000: TCP only acknowledges bytes up to the first missing byte in the stream, and it is the
next byte host B is expecting

* Scenario 3
* Host B received 1t segment containing bytes from 0-999. Somehow, next it received

3"d segment containing bytes from 2,000-2,999.
* What does host B in this case that the segments arrive out of order?
* TCP does not specify how to deal with this situation. Hence, it is up to the implementation.

* Option 1: Host B immediately discards out-of-order segment = simple receiver design

* Option 2: Host B keeps the out-of-order segment and waits for missing bytes to fill in the gaps = more
efficient on bandwidth utilization = taken in practice

TCP is Connection-Oriented

* Keep track of states of receiver and sender
e Connection Establishment
* Connection Termination
* TCP finite state machine and state transition

Connection Establishment

Active participant Passive participant
(client) (server)

12/4/2024 CISC 3340 MW?2 - Fall 2024 23

Connection Termination

client
close
FIN
NO
close
f\N
+
'S ACk
=
-
Q)
ES
.l-—
closed ~

T —

.

CLOSED

e,

Passive open Close
Close

LISTEN
1 \ .
|II |I
SYN/SYN + ACK Send/SYN | '
o —SYNSYN + ACK ™ o
SYN_RCVD [+ — R SYN_SENT
ACK \ ﬁ;‘f“_\] + ACK/ACK
| |
(I
Close/FIN ESTABLISHED
T
{
1 ClosemIN_ \p_mmcx
FIN_WAIT_1 [~ . T " CLOSE_WAIT
., FINJACK
ACK o Clase/FIN
v if.
E ¥]
FIN_WAIT_2 CLOSING LAST_ACK
\ o Y segment lifetimes L
__ FIN/ACK _
- = TIMF_WAIT ~ CLOSED
w

12/4/2024

CISC 3340 MW?2 - Fall 2024

Connection Establishment and State Transition

Connection Establishment and State Transition

12/4/2024 CISC 3340 MW?2 - Fall 2024

26

Connection Establishment and State Transition

CLOSED

Passive open Close

LISTEN
I

-

—

\cﬁve open/SYN

“'.

| |
|
SYN/SYN + ACK / \ Send-"ﬁ‘fh | ¥

SYN_RCVD (=

—SYN/SYN + ACK™

-

SYN_SENT

Gospiinn o4

ACK T\ /" SYN + ACK/ACK
{

b
\ |
1 |

L
ESTABLISHED

clie 3340 MW2 - Fall 2024

26

Connection Establishment and State Transition

CLOSED

Passive open Close

LISTEN
I

-

—

\cﬁve open/SYN

[
ser'ver

“'.

| |
|
SYN/SYN + ACK / \ Send-"ﬁ‘fh | ¥

SYN_RCVD (=

—SYN/SYN + ACK™

-

SYN_SENT

Gospiinn o4

ACK T\ /" SYN + ACK/ACK
{

b
\ |
1 |

L
ESTABLISHED

clie 3340 MW2 - Fall 2024

26

Connection Establishment and State Transition

Al
[l
server/i
CLOSED | CLOSED [.
T Active open/SYN -__""'-u.___ Active openiSYN
Passive open Close \ Passive open Close
Close \ Close ™, \
. \".. \ '-\\ Y
LISTEN \ LME,\. x
| I'. \ | \ \
|I |I I|I |I
|
SYN/SYN + ACK / \ Send«"s‘f’h | ' SYN/SYN + ACK / \ Serm‘ﬁ‘r‘h '| '
—] ——SYN/SYN + ACK ™ - ; P — -
SYN_RCVD |3 ShiaLk SYN_SENT SYN_RCVD — SYNSVN + AGK™ SYN_SENT
ACK N e SYN + ACK/ACK ACK O\ /SYN + ACK/ACK
\ f \ i
\ { \ f
T vy

ClosefE)2 4 ESTABLISHED clie 3340 MW2 - Fall /699FIN ESTABLISHED server

Connection Establishment and State Transition

client

[
ser'ver

closed
CLOSED L0000 CLOSED [
" Active open/SYN Active open/SYN
Passive open Close \ Passive open Close
Close \ Close \
\ hY
. . \ \ A\ \
LISTEN \ LIHTE\' \ \
| | 1 Y |
II |I | \ |
| | II |
| |
SYN/SYN + ACK / \ Send/SYN | } SYNISYN + ACK / \ SondSYN II |
E— _——SYN/SYN + ACK™ . — -
SYN_RCVD |3 SRthl SYN_SENT SYN RCVD |2 “SYN/SYN + ACK™ ~ SYN_SENT
ACK '\ ;/' SYN + ACK/ACK ACK O\ / SYN + ACKIACK
\ . \
| |
Py] t
ClosefE)2 4 ESTABLISHED clie 3340 MW2 - Fall /699FIN ESTABLISHED server

Connection Establishment and State Transition

client ser'ver
closed closed

CLOSED T CLOSED T
l Active open/SYN) Active open/SYN
Passive open Close \ Passive open Close
Close \ Close ™, \
- \". .-\\ .,_\\ \
LISTEN \ LME,\. \
| ',I | | '-II |
| |I \ |I
|
SYN/SYN + ACK / \ ——— | ' SYN/SYN + ACK / \ Send/SYN '| }
_——SYN/SYN + ACK™ . - E— - N -
SYN_RCVD |= - SYN_SENT SYN_RCVD — “SYN/SYN + ACK™ — SYN_SENT
ACK N /7 SYN+ACKACK ACK Y/ SYN+ACK/ACK
\ f \ /

LI | L
ClosefE)2 4 ESTABLISHED clie 3340 MW2 - Fall /699FIN ESTABLISHED server

Connection Establishment and State Transition

client ser'ver

closed closed .)
................. Action: passive open

CLOSED / — CLOSED —
d Active open/SYN —3 Active open/SYN
Passive open Close \ Passive open | Close \
Close \ | Close ™, \
\ \ W \ \
LISTEN "\\ L]HTE‘\' \"-. \'\
] \ \ \ 4

| | \
SYNSYN + ACK / \ ——— | ' SYN/SYN + ACK / \ Send/SYN |

e — T
— SY\I SYN + ACK ™ - . — / -
SYN_RCVD |= - SYN_SENT SYN RCVD |2 — “SYN/SYN + ACK™ — SYN SENT
ACK N ;/' SYN + ACK/ACK ACK O\ / SYN + ACKIACK
\ . \
1 | ! |
LI I |

ClosefE)2 4 ESTABLISHED clie 3340 MW2 - Fall /699FIN ESTABLISHED server

Connection Establishment and State Transition

. Al
client)
server/¥s
closed
................. Action: passive open
listen
Slnbd T CLOSED ?“"---xx
: e Active open/SYN i I __-_-"'“=-.__ Active open/SYN
Passive open Close \ Passive open|l |Close
Close \ [- Close ™, \
Y Y L, A ."‘-\)
LISTEN \ \ \
| \ LISTEN \
\ Y | \
| | II |
| |
SYN/SYN + ACK / \ ——— | v SYN/SYN + ACK / \ SendSYN '| '
] ——SYN/SYN + ACK ™ - — _—
SYN_RCVD |3 S SYN_SENT SYN_RCVD |3 — “SYNISYN + ACK™ — = SYN_SENT
ACK '\ ;/' SYN + ACK/ACK ACK N\ / SYN + ACKIACK
\ . \
| |
ro R

ClosefE)2 4 ESTABLISHED clie 3340 MW2 - Fall /699FIN ESTABLISHED server

Connection Establishment and State Transition

. Al
ient g
clien server/i
Action: active open-—-—-—p Action: passive open
listen
= -
e ~ CLOSED [
: e Active open/SYN i I __-_-"'“=-.__ Active open/SYN
Passive open Close \ Passive open|l |Close
Close . - Close \
% \ L, 4 ! A
LISTEN \ p— \ \
| I'. | Il'l \
I|| l| II| II|
SYN/SYN + ACK / \ Send«"s‘f’h | % SYN/SYN + ACK / \ Serm‘ﬁ‘r‘h '| '
P ——SYN/SYN + ACK™ . - — _—SYN o
SYN_RCVD |2 it SYN_SENT SYN_RCVD |3 — _SYN/SYN + ACGK™ — SYN_SENT
ACK N ;/' SYN + ACK/ACK ACK N\ e SYN + ACK/ACK
\ . \
| | ! |
LI LI |

ClosefE)2 4 ESTABLISHED clie 3340 MW2 - Fall /699FIN ESTABLISHED server

Connection Establishment and State Transition

. Al
i H
client server/i
Action: active open sy o e Action: passive open
N s i
“3€quencey, listen
=X
= -
e 2 CLOSED [
: e Active open/SYN i I __-_-"'“=-.__ Active open/SYN
Passive open Close \ Passive open|l |Close
Close . - Close \

i) \\ L, 4) A
LISTEN \ p— \ \
| I'. | Il'l \

I|| l| II| II|
SYN/SYN + ACK / \ Send«"s‘f’h | % SYN/SYN + ACK / \ Serm‘ﬁ‘r‘h '| '
S ——SYN/SYN + ACK™ . - — - J o
SYN_RCVD |2 it SYN_SENT SYN_RCVD |3 __W\' GIHG R B SYN_SENT
ACK N ;/' SYN + ACK/ACK ACK N\ e SYN + ACK/ACK

\ . \
| | ! |
LI LI |

ClosefE)2 4 ESTABLISHED clie 3340 MW2 - Fall /699FIN ESTABLISHED server

Connection Establishment and State Transition

. ii(:!)
client server e
Action: active open-—-—--eeep L Action: passive open
N s i
2 9€
SYN_SENT Quencey, listen
=X
CLOSED :E_’.."\~ CLOSED [.
T Active open/SYN | "_"""-u.___ Active openiSYN
Passive open Close \ Passive open|l |Close
Close . - Close \
Y \ L, 4 \ b
LISTEN \ LISTEN \ \
| \ \ I'l |
II l II III
l | | \
SYMN/SYN + ACK / \ SEHIJ'.-"‘:YT\ SYN/SYN + ACK / \ SEHU'.-’(’YT\ Il I\
P ——SYNISYN + ACK ™ — YN N
SYN_RCVD |= - : SYN_SENT SYN_RCVD |= — DATIIoE — SYN_SENT
ACK N ;/' SYN + ACK/AT ACK N\ /SYN + ACK/ACK
Voo \
LI | . L
ClosefE)2 4 ESTABLISHED clie 3340 MW2 - Fall /699FIN ESTABLISHED server

Connection Establishment and State Transition

. Al
client)
server/i
Action: active open-—-ep Action: passive open
N s i
e
SYN_SENT “Sequencey, listen
=X
CLOSED :E""--\m Tostp F——
T Active open/SYN 3 T Active open/SYN
Passive open Close \ Passive open | Close
Close . - Close \
Y \ L, 4 \ b
LISTEN \ S TEN \
] \ ') \ \
\ ll | '|I
SYN/SYN + ACK / \ ——— SYNISYN + ACK; \ Send/SYN '| ;
- ——SYN/SYN + ACK ™ -
P el = / " SYN_SENT YN ROVl __—__ SYN/SYN + ACK™ - o YN SENT

ACK T\ /SYN + ACK/AT
" {

\ |
1 |

L
Ciczgﬁ’f/]i«bzél ESTABLISHED

clie

3340 MW?2 - Fal| 961N

ACK ™\ / SYN + ACK/ACK
\ i
Y {

1 |

L |
ESTABLISHED server

Connection Establishment and State Transition

client server/ @)
Action: active open-—- e
N
SYN_SENT “2€quencey,
=X
SYN_RECV
cLosed [T CLOSED |

Passive open

SYN/SYN + ACK / \ SE‘nd-"‘%Yh

—SYN/SYN + ACK™

SYN_RCVD (=

Active open/SYN
Close \
Close

LISTEN

ACK N\

\
\

e SYN + ACK/AT
{

L

Gospiinn o4

ESTABLISHED

clie

-

Passive open

LIHTE‘\'

SYIN + AC k/ \ Senn‘..";‘r'T\

“SYN/SYN + ACK™

T Active openiSYN
Close \
Closa ™,

\ \".

\ 3
\ A\
\

|

\

\ \

| |

| 1

3340 MW?2 - Fal

YN

ACK O\
Y f
1 |

LI |
ESTABLISHED

SYN_SENT

Ve SYN + ACK/ACK
i

server

Connection Establishment and State Transition

server/i®Y
Action: active open-—- e
SYN_SENT duencepy,, _ .
SYN_RECV
=\
\)e“ce ,*\4—
N'\'P\C\(, e‘-(\e“t
N S ron dg

o —_E_,..
CLOSED —~ E— —
CLOSED —

Passive open

SYN/SYN + ACK / \ SE‘nd-"‘%Yh

—SYN/SYN + ACK™

SYN_RCVD (=

Active open/SYN
Close \
Close

LISTEN

ACK N\

\
\

e SYN + ACK/AT
{

L

Gospiinn o4

ESTABLISHED

clie

Passive open

LIHTE‘\'

SYIN + AC k/ \ Senn‘..";‘r'T\

T Active openiSYN
Close \
Closa ™,

\ \".

\ 3
\ A\
\

|

\

\ \

| |

| 1

3340 MW?2 - Fal

SYN_RCVDT[S __W\""W i | SYN_SENT
j ACK N\ Ve SYN + ACK/ACK
'\II Il|’
1 |
T
GlosefFIN ESTABLISHED server

Connection Establishment and State Transition

server/i®Y
Action: active open-—- e
SYN_SENT duencepy,, _ .
SYN_RECV
=\
\)e“ce ,*\4—
N'\'P\C\(, e‘-(\e“t
N S ron dg

o —_E_,..
CLOSED —~ E— —
CLOSED —

Passive open

SYN/SYN + ACK / \ SE‘nd-"‘%Yh

—SYN/SYN + ACK™

SYN_RCVD (=

Active open/SYN
Close \
Close

LISTEN

ACK N

\

/" SYN + ACKIAC

v

Gospiinn o4

ESTABLISHED

clie

Passive open

LIHTE‘\'

SYIN + AC k/ \ Senn‘..";‘r'T\

T Active openiSYN
Close \
Closa ™,

\ \".

\ 3
\ A\
\

|

\

\ \

| |

| 1

3340 MW?2 - Fal

SYN_RCVDT[S __W\""W i | SYN_SENT
j ACK N\ Ve SYN + ACK/ACK
'\II Il|’
1 |
T
GlosefFIN ESTABLISHED server

Connection Establishment and State Transition

server/l)
Action: active open
=X
SYN_RECV
(A =3
Ue“c _ *\A—
P Fgermen®
SO
Established
CLOSED S CLOSED |

Passive open

SYN/SYN + ACK / \ SE‘nd-"‘%Yh

SYN_RCVD (=

LISTEN

—SYN/SYN + ACK™

!
II'-

Active open/SYN
Close \
Close .

\
\

Gospiinn o4

ACK

/" SYN + ACK/ACK

Passive open

SYN + AC k/ \ Send/SYN

LIHTE‘\'

“SYN/SYN + ACK™

T Active openiSYN
Close \
Closa ™,

\ \‘-_

\ 3
\ A\
\

|

\

\ \

| |

| 1

I
SYN_RCVﬂ-j‘/ —

I'. il
|
L%

= SYN_SENT

client: 3310 vw2 - Fal

YN

ACK

TN /" SYN + ACK/ACK
f

A
! |
\ |

LI |
ESTABLISHED

SYN_SENT

server

Connection Establishment and State Transition

serveriY
Action: active open
=X
SYN_RECV

e =

Ue“c _ *\A—
P Fgermen®

Kok
Established ACK, 4y

nOWIedgeme

ntsyyq

CLOSED = CLOSED |

Passive open

LISTEN

!
II'-

Active open/SYN
Close \
Close .

\
\

Passive open

T Active openiSYN
Close \
Closa ™,

\'.

\ Y
\ A\
\

LIHTE‘\' \
] . ' \
I| lI I II \
/ \ | % / | |
SYN/SYN + ACK SE‘nd-"‘:Yh | 4 ISYN + A(K \ Sem;‘,.ff,‘fh | '
— ——SYN/SYN + ACK™ > - - “SYN/SYN + ACK™
SYN_RCVD [= - SYN_SENT SYN_RCVD' |= =| SYN_SENT
ACK '\‘ V4 “SYN + ACKIACK j ACK ™\ Vv SYN + ACK/ACK
'\II Ilf
. LI
Closefb24 clie 3340 MW2 - Fall /699FIN ESTABLISHED server

Connection Establishment and State Transition

serveriY
Action: active open
=X
SYN_RECV

e =

Ue“c _ *\A—
P Fgermen®

Kok
Established ACK, 4y

nOWIedgeme

ntsyyq

CLOSED = CLOSED |

Passive open

LISTEN

!
II'-

Active open/SYN
Close \
Close .

\
\

Passive open

T Active openiSYN
Close \
Closa ™,

\'.

\ Y
\ A\
\

LME\' \
T , . ‘.
II || I II |I
/ \ | ‘ / , |
—H-\ NISYN + 4C R SE"dI&Yh | T WSYMN + ,:U: k \ SIE‘"U‘.-K!YT\ | v
——SYN/SYN + ACK™ o
SYN_RCVD |< b i b SYN_SENT sYN RCVITH “SYN/SYN + ACK™ S e
ACI{ '\‘ V4 5 SYN + ACKIACK i ACK \\ e SYN + ACK/ACK
i
CloseiD024 clie 3340 MW2 - Fall 909N server

Connection Establishment and State Transition

Action: active open
e =
Ue“c _ *\A—
S P gemen
SO
Established ACK, 4y
nOWIed
gemel’)t= y+1 .
Established
CLOSED ~ CLOSED [~ .

Passive open

LISTEN

SYN/SYN + ACK / \ SE‘nd-"‘%Yh

—SYN/SYN + ACK™

SYN_RCVD (=

!
II'-

Active open/SYN
Close \
Close .

\
\

ACK

/" SYN + ACK/ACK

Gospiinn o4

I'. il
|
L%
= SYN_SENT
client: 3310 vw2 - Fal

SYN_RCVD

Passive open

LIHTE‘\'

SYN/SYN + AC k/ \ Send/SYN

T Active openiSYN
Close \
Closa ™,

\ \".

\ 3
\ A\
\

|

\

\ \

| |

| 1

YN

= . __—-__ SY\I; SYN + ACK™ — - SYN.SENT
ACK \\ Ve SYN + ACK/ACK
ESTABLISHED server

Connection Termination and State Transition (1)

@ . 0
=2 client server g%
O
=
O
£
Client closes first +
closed
CloselFIN ESTABLISHED CloselFIN ESTABLISHED
I.'I IIII I.'I III
1 CloseFIN__~ _FINJACK 1 CloseFIN__~ _FINJACK
FIN_WAIT_L & o "| CLOSE_WAIT FIN.WAIT_1 & — T "| CLOSE_WAIT
., FINJACK ., FINJACK
ACK ‘“’{_jf_ Close/FIN ACK ‘“’{_jf_ Close/FIN
1 :-ex\ ! J 1 :-ex\ ! J
FIN_WAIT_2 ’*’1%, CLOSING LAST_ACK FIN_WAIT_2 ’*’1%, CLOSING LAST_ACK
|I ('f" ACk Timeout af_‘rEr_a‘wo ACK |I ('f" ACk Timeout af_‘rEr_a‘wo ACK
| o r segment lifetimes i | o r segment lifetimes i
. FIN/ACK : FIN/ACK :
127472624 TIME_WAIT =~ CERER340 MW?2 - Fall 2024 TIME_WAIT =~ CDOSED

Connection Termination and State Transition (1)

@ . 0
=2 client server g%
O
=
O
£
Client closes first +
—closed
Close/FIN ESTABLISHED CloselFIN ESTABLISHED
. - /|
1 CloseFIN__~ _FINJACK 1 CloseFIN__~ _FINJACK
FIN_WAIT_L & o "| CLOSE_WAIT FIN.WAIT_1 & — T "| CLOSE_WAIT
., FINJACK ., FINJACK
ACK ‘“’{_jf_ Close/FIN ACK ‘“’{_jf_ Close/FIN
1 :-ex\ ! J 1 :-ex\ ! J
FIN_WAIT_2 ’*’1%, CLOSING LAST_ACK FIN_WAIT_2 ’*’1%, CLOSING LAST_ACK
|I ('f" ACk Timeout af_‘rEr_a‘wo ACK |I ('f" ACk Timeout af_‘rEr_a‘wo ACK
| o r segment lifetimes i | o r segment lifetimes i
. FIN/ACK : FIN/ACK :
127472624 TIME_WAIT =~ CERER340 MW?2 - Fall 2024 TIME_WAIT =~ CDOSED

Connection Termination and State Transition (1)

=
o
=
O
£
Client closes first +
_closed
Closa/FIN ESTABLISHED Closa/FIN ESTABLISHED
L C{oseﬂ"-l_rg_/ FIN/ACK L CFosefFI_T‘_L/ FIN/ACK
FIN_WAIT_1 [T | CLOSE_WAIT FIN_WAIT_1 [T | CLOSE_WAIT
-, FINJACK -, FINJACK
ACK f{;-f. Close/FIN ACK f{;-f. Close/FIN
L S ! J 1 L ! J
.y
FIN_WAIT_2 CLOSING LAST _ACK FIN_WAIT_2 % CLOSING LAST_ACK
|I ACK Timeout after two ACK |I ‘4 ACK Timeout after two ACK
i r segment lifetimes i o r segment lifetimes i
\ FIN/ACK : FIN/ACK :
+ TIME_WAIT - CERIEB340 MW2 - F3M24 = TIME_WAIT = CHOSED

15 clie
=

nt

server/i®Y

Ty
—

<>

@ . 5.0
=2 client server g%
close
=
o
=
O
£
Client closes first +
_closed
Closa/FIN ESTABLISHED Closa/FIN ESTABLISHED
L CchefFI_T‘_C_/," FIN/ACK L Cioseﬂ“-l_rg_/ FIN/ACK
FIN_WAIT_1[======------""~ T | CLOSE_WAIT FIN_WAIT_1 [T | CLOSE_WAIT
FIN/ACK ., FINJACK
ACK 0, Close/FIN ACK f{;-f. Close/FIN
L ! J L b ! J
.y
FIN_WAIT_2 CLOSING LAST_ACK FIN_WAIT_2 f/k:? CLOSING LAST_ACK
|I ACK Timeout after two ACK |I ‘4 ACK Timeout after two ACK
i r segment lifetimes i o r segment lifetimes i
\ FIN/ACK _ FIN/ACK _
5 TIMF_WAIT - CERSEB340 MW?2 - Fa}2024 = TIMF_WAIT = CHOSED

Connection Termination and State Transition (1)

Connection Termination and State Transition (1)

@ . 5.0
=2 client server g%
close
FIN
=
o
=
O
£
Client closes first +
_closed
Closa/FIN ESTABLISHED Closa/FIN ESTABLISHED
L CchefFI_T‘_C_/," FIN/ACK L Cioseﬂ“-l_rg_/ FIN/ACK
FIN_WAIT_1[======------""~ T | CLOSE_WAIT FIN_WAIT_1 [T | CLOSE_WAIT
FIN/ACK ., FINJACK
ACK 0, Close/FIN ACK f{;-f. Close/FIN
L L] Y L ® L Y
.y
FIN_WAIT_2 CLOSING LAST_ACK FIN_WAIT_2 f/k:? CLOSING LAST_ACK
|I ACK Timeout after two ACK |I ‘4 ACK Timeout after two ACK
i r segment lifetimes i o r segment lifetimes i
\ FIN/ACK _ FIN/ACK _
5 TIMF_WAIT - CERSEB340 MW?2 - Fa}2024 = TIMF_WAIT = CHOSED

Connection Termination and State Transition (1)

18 client server/J@)

<>

close
FIN

timed wait

Client closes first 1
closed

CloselFIN ESTABLISHED CloselFIN ESTABLISHED
T
]
1 CchefFI_T‘_L/,’l \p_mmcx 1 IFI_T*_C_/ FIN/ACK

Close
B —

FINOWATI R S - | CLOSE_WAIT | | FIN_WAIT_I _ " CLOSE_WAIT
- FINJACK . FINJACK
— (oY Close/FIN Ak g CloselFIN
L S J 1 L J
— 4 —
FIN_WAIT_2 CLOSING LAST ACK FIN_WAIT_2 f/l:%? CLOSING LAST ACK
| ACk Timeout after two ACK | 4 Ack Timeout after two ACK
' ' segment lifetimes o ' ' segment lifetimes o

__ FINJACK \20 FIN/ACK
+9/4/9694—=| TIME_WAIT = CEREEB340 MW2 - Fall 2024 = TIME_WAIT = CDOSED

Connection Termination and State Transition (1)

@ i 0
=2 client server g%
close
FIN
O
=
O
£
Client closes first +
closed
Close/FIN FSTABLISHED Close/FIN ESTABLISHED
T
h
1 cmsem_rg_//' \P_INM.CK 1 cmsem_rg_/ \ o FINJACK
IPFINOWATIR S — ™| CLOSE_WAIT FIN_WAIT L [— e TLCLOSE_WAIT
) FINJACK . FINJACK
— (oY Close/FIN Ak g Close/FIN
L S ! J 1 L ! J
.y
FIN_WAIT_2 CLOSING LAST_ACK FIN_WAIT_2 ’4;:? CLOSING LAST_ACK
| ACk Timeout after two ACK | 4 Ack Timeout after two ACK
' ' segment lifetimes o ' ' segment lifetimes o

__ FINJACK \20 FIN/ACK
+9/4/9694—=| TIME_WAIT = CEREEB340 MW2 - Fall 2024 = TIME_WAIT = CDOSED

Connection Termination and State Transition (1)

@ i 0
=2 client server g%
close
FIN
pCck
O
=
O
£
Client closes first +
closed
CloselFIN FSTABLISHED CloselFIN ESTABLISHED
T
h
1 CfcsefFI_T‘_C_/," \p_xr;nu“,}(1 CFosefFI_T‘_C_/ \ o FINJACK
IPFINOWATIR S — ™| CLOSE_WAIT FIN_WAIT L [— e TLCLOSE_WAIT
) FINJACK . FINJACK
— (oY Close/FIN Ak g Close/FIN
L S ! J 1 L ! J
.y
FIN_WAIT_2 CLOSING LAST_ACK FIN_WAIT_2 ’4;:? CLOSING LAST_ACK
| ACk Timeout after two ACK | 4 Ack Timeout after two ACK
' ' segment lifetimes o ' ' segment lifetimes o

__ FINJACK \20 FIN/ACK
+9/4/9694—=| TIME_WAIT = CEREEB340 MW2 - Fall 2024 = TIME_WAIT = CDOSED

Connection Termination and State Transition (1)

@ i 0
=2 client server g%
close
FIN
pCck
+
o
=
O
£
Client closes first +
closed
ClosalFIN ESTABLISHED ClosalFIN FSTABLISHED
T, T I i
N ! 1
Y CfcsefFI_T‘_C_/," \p_xr;nu“,}(1 CFosefFI_T‘_C_/ :\\p_mmm(
IPFINOWATIR S . " CLOSE_WAIT| | FIN_WAIT_1 [— S CLOSE_WAIT
) FINJACK . FINJACK
— ff,jf_. Close/FIN ACK ?{,jf, Close/FIN
L S ! J 1 L ! J
.y
FIN_WAIT_2 CLOSING LAST_ACK FIN_WAIT_2 ’4;:? CLOSING LAST_ACK
| ACk Timeout after two ACK | 4 Ack Timeout after two ACK
' o v segment lifetimes y ' o v segment lifetimes y
\ FIN/ACK : FIN/ACK :
19/4/2624—= TIME_WAIT - CERYER340 MW?2 - Fa}2624 = TIME_WAIT - CDOSED

Connection Termination and State Transition (1)

@ i 0
=2 client server g%
close
FIN
pCck
+
o
=
O
£
Client closes first +
closed
CloselFIN ESTABLISHED CloselFIN ESTABLISHED
T, T I i
N ! 1
Y CFosefFI_T‘_Q_/," \P_INMCK 1 CFose:"FI_T‘_C_/ :\\P_INM.CK
IPFINOWATIR S — ™| CLOSE_WAIT FIN_WAIT L [— e € CLOSF_WAIT
:) FINJACK . FINJACK
— ff,jf_. Close/FIN ACK ?{,jf, Close/FIN
:1 S ! J 1 L ! J
T 2
FIN_WAIT_2 CLOSING LAST_ACK FIN_WAIT_2 ’4% CLOSING LAST_ACK
| ACk Timeout after two ACK | 4 Ack Timeout after two ACK
' o v segment lifetimes y ' o v segment lifetimes y
\ FIN/ACK : FIN/ACK :
19/4/2624—= TIME_WAIT - CERYER340 MW?2 - Fa}2024 = TIME_WAIT - CDOSED

Connection Termination and State Transition (1)

@ . 6.0
=2 client server g%
close
FIN
pCck
=
o
=
O
£
Client closes first +
closed
CloselFIN FSTABLISHED CloselFIN FSTABLISHED
T —
N ! 1
L CFose:"FI_T‘_C_/," \P_INM.CK L moseﬂ“-l_rg_/ :\\P_INM.CK
FIN_WAIT_1[======------""~ T "| CLOSE_WAIT FIN_WAIT_1 [L€ CLOSE_WAIT
: ., FINJACK ., FINJACK
| | ACK f{;-f. Close/FIN ACK f{;-f. Close/FIN
hi ¥ v 1 % ¥ '
] T .y
FIN_WAIT_2 CLOSING LAST_ACK FIN_WAIT_2 % CLOSING LAST_ACK
| B e ACK |. ¢ B e ACK
o r segment lifetimes i o r segment lifetimes i
k FIN/ACK _ FIN/ACK _
127412024 TIME_WAIT = CERREB34(MW2 - Fa}2024 = TIME_WAIT = CLOSED

Connection Termination and State Transition (1)

@ 1@
=2 client server g%
close
FIN
pCck
close
1A\\
o
O
=
O
£
Client closes first +
closed
Close/FIN ESTABLISHED Close/FIN ESTABLISHED
."I: l'ul .n'l lll'.l
1 CloselFIN__// \._FINJACK 1 CloselFIN__~ | _FINJACK
FIN_WAIT_1#[™==---------""" S "| CLOSE_WAIT FIN_WAIT 1 [* . L€ CLOSE_WAIT
; ., FINJACK ., FINJACK -
Ak N, \ Close/FIN Ack o \ " | Close/FIN
L‘I b ! J 1 b ! : J
, T .y .y T
FIN_WAIT_2 ’*’1%, CLOSING LAST_ACK FIN_WAIT_2 ’*’1%, CLOSING LAY _ACK
: N3 ACK [imeout after two ACK | N} ACK [imeout after two ACK
| o r segment lifetimes i | o r segment lifetimes i
__ FINJACK - FIN/ACK :
— TIMFE_WAIT - CERREB340 MW?2 - Fall Y034 TIMFE_WAIT = CBOSED

Connection Termination and State Transition (1)

@ i @
=2 client server g%
close
FIN
pCck
close
1A\\
O
=
O
£
Client closes first +
closed
Close/FIN FSTABLISHED Close/FIN FSTABLISHED
."I: l'ul .n'l lll'.l
1 CloselFIN__// \._FINJACK 1 CloselFIN__~ | _FINJACK
FIN_WAIT_1#[™==---------""" T | CLOSE_WAIT FIN_WAIT_L & S
; . FINJACK ~ ., FINJACK
lack o \ Close/FIN ACK o \
X 4 , 4
J— S E— r S E— ,
FIN_WAIT_2 *’lg-f CLOSING LAST_ACK FIN_WAIT_2 *’lg-f CLOSING glgr_acx
("f" ACK Timeout after two ACK | ('.f" ACK Timeout after t
| R ' segment lifetimes T | R ' segment lifetimes o
. FINJACK : FIN/ACK
— TIME_WAIT ~ CEEYER340 MW?2 - Fall 2022 TIME_WAIT -

Close/FIN

1
1
1
1
.

CDHOSED

Connection Termination and State Transition (1)

@ i 0
=2 client server g%
close
FIN
pCck
close
1A\\
=
O
=
O
£
Client closes first +
closed
Close/FIN ESTABLISHED Close/FIN ESTABLISHED
."I: l'ul .n'l lll'.l
1 CloselFIN__// \._FINJACK 1 CloselFIN__~ | _FINJACK
FIN_WAIT_1#[™==---------""" T | CLOSE_WAIT FIN_WAIT_L & S
; FINJACK ~ . FNJACK
| ack o \ Close/FIN Ak o \
| & &
Y b J L kS
. ' 7 : } - 7 :
FIN_WAIT_2 *’1%, CLOSING LAST_ACK FIN_WAIT_2 *’1%, CLOSING
| (Jf- ACK Timeout ﬂftﬁ'r_i‘wﬂ ACK |I ('.f" ACK fter
i o r segment lifetimes i | o r segment lifetimes
|\ FINJACK : FIN/ACK
Tt TIME_WAIT ~ CEEYER340 MW?2 - Fall 2022 TIME_WAIT -
__________________ |

s
Timeout after t A

Close/FIN

1
1
1
.

CDHOSED

Connection Termination and State Transition (1)

@ i @
=2 client server g%
close
FIN
pCck
close
1A\\
+
S ACk
=
o)
£
Client closes first +
closed
Close/FIN FSTABLISHED CloselFIN FSTABLISHED
."I: l'ul .n'l lll'.l
1 CloselFIN__// \._FINJACK 1 CloselFIN__~ | _FINJACK
FIN_WAIT_1#[™==---------""" o | CLOSE_WAIT FIN_WAIT_1 [* . T
; FINJACK ~ . FNJACK
| ack o \ Close/FIN Ak o \
z J , J
J— S E— r S E— ,
FIN_WAIT_2 *’lg-f CLOSING LAST_ACK FIN_WAIT_2 *’lg-f CLOSING glgr_acx
("f" ACK Timeout after two ACK | ('.f" ACK Timeout after t
" R ' segment lifetimes T | R ' segment lifetimes o
1\ FINJACK : FIN/ACK
it TIME_WAIT ~ CEEYER340 MW?2 - Fall 2022 TIME_WAIT -
__________________ |

Close/FIN

1
1
1
1
.

CDHOSED

Connection Termination and State Transition (1)

@ i 0
=2 client server g%
close
FIN
pCck
close
1A\\
+
'S ACk
=
O
£
Client closes first +
closed
CloselFIN ESTABLISHED CloselFIN ESTABLISHED
."I: l'ul .n'l lll'.l
1 CloselFIN__// \._FINJACK 1 CloselFIN__~ | _FINJACK
FIN_WAIT_1#[™==---------""" T | CLOSE_WAIT FIN_WAIT_L & S
; . FINJACK ~ ., FINJACK
|Ack T \ Close/FIN Ak g \
:‘l b ! J 1 E !
T 2 : } . 2 : '
FIN_WAIT_2 *’lg-f CLOSING LAST_ACK FIN_WAIT_2 *’lg-f CLOSING glgr_acx
T 4+ \cx_Timeout after two P— | & e Wl Bl
" R ' segment lifetimes T | R ' segment lifetimes o
\ '__ FIMN/ACEK)] FIMN/ACEK _
. _12/4/2024 8 TIME_WAIT -| CEBREB34() MW?2 - Fall 2024 TIME_WAIT -

Close/FIN

1
1
1
1
.

CDHOSED

Connection Termination and State Transition (1)

@ i 0
=2 client server g%
close
FIN
pCck
close
1A\\
+
'S ACk
=
O
£
Client closes first +
closed
CloselFIN ESTABLISHED CloselFIN ESTABLISHED
."I: l'ul .n'l lll'.l
1 CloselFIN__// \._FINJACK 1 CloselFIN__~ | _FINJACK
FIN_WAIT 1ef*=—=—-- o o | CLOSE_WAIT FIN_WAIT 1 [~ . ST
; ., FINJACK ., FINJACK
|Ack T \ Close/FIN Ak o \
X & &
1 b J 1 kS
T 7 : } - 7 :
FIN_WAIT_2 *’1%, CLOSING LAST_ACK FIN_WAIT_2 *’1%, CLOSING
,1| ('f— _‘\.(‘K ﬁmeﬂuf ﬂffﬁ'ri‘wﬂ .'""I.(:K |I (']’— _'1;(‘1(_ A i
i o i segment lifetimes i | o r segment lifetimes
|\ FINJACK — FIN/ACK -
. _12/4/2024 8 TIME_WAIT -| CEBREB34() MW?2 - Fall 2024 TIME_WAIT -

LAY ACK
Timeout after t A

1
1
1
.

Connection Termination and State Transition (1)

@ D
=2 client server g%
close
FIN
pCck
close
1A\\
+—
'S ACk
=
O
£
Client closes first +
closed
Close/FIN ESTABLISHED Close/FIN ESTABLISHED
."I: l'ul .n'l lll'.l
1 CloselFIN__// \._FINJACK 1 CloselFIN__~ | _FINJACK
FIN_WAIT_1#[™==---------""" S "| CLOSE_WAIT FIN_WAIT_L & e TLCLOSE_WAIT
; . FNJACK . FNJACK ;
Ak N, \ Close/FIN Ack o \ | | Close/FIN
A * 4 — !] * 4 — 1.
FIN_WAIT_2 ’*’1%, CLOSING LAST_ACK FIN_WAIT_2 ’*’1%, CLOSING LAY _ACK
1 N3 ACK Timeout &fter two ACK | \§ ACK [imeout after two | ACK
i o i segment lifetimes i | o r segment lifetimes i
1\ FIN/ACK — FIN/ACK -
12024 TIME_WAIT - CERYED34) MW?2 - Fall 2024 TIME_WAIT = craseD

Connection Termination and State Transition (1)

@ D
=2 client server g%
close
FIN
pCck
close
1A\\
+—
'S ACk
=
O
£
Client closes first +
closed
Close/FIN ESTABLISHED Close/FIN ESTABLISHED
."I: l'ul .n'l lll'.l
1 CloselFIN__// \._FINJACK 1 CloselFIN__~ | _FINJACK
FIN_WAIT_1#[™==---------""" S "| CLOSE_WAIT FIN_WAIT_L & e TLCLOSE_WAIT
; . FNJACK . FNJACK ;
Ak N, \ Close/FIN Ack o \ | | Close/FIN
A * 4 — !] * 4 — 1.
FIN_WAIT_2 ’*’1%, CLOSING LAST_ACK FIN_WAIT_2 ’*’1%, CLOSING LAY _ACK
1 N3 ACK Timeout &fter two ACK | \§ ACK [imeout after two | ACK
i o i segment lifetimes i | o r segment lifetimes i
1\ FIN/ACK —— FIN/ACK -
12024 TIME_WAIT_ P —-ooomoe = CCRED340 MW2 - Fall 202% TIME_WAIT = craseD

Connection Termination and State Transition (1)

@ @,
=2 client server g%
close
FIN
pCck
close
1A\\
+
S ACk
=
O
£
Client closes first +
closed
CloselFTN ESTABLISHED CloselFTN ESTABLISHED
."I: l'ul .n'l lll'.l
1 CloselFIN__// \._FINJACK 1 CloselFIN__~ | _FINJACK
FIN_WAIT_1#[™==---------""" S "| CLOSE_WAIT FIN_WAIT_L & e TLCLOSE_WAIT
; . FNJACK . FNJACK ;
jack g \ Close/FIN Ack g \ ' | Close/FIN
A * 4 — !] * 4 — 1.
FIN_WAIT_2 ’*’1%, CLOSING LAST_ACK FIN_WAIT_2 ’*’1%, CLOSING LAY _ACK
] N} fiary WeesBUec i o ACK |, & ACK Timeout &fter two | ACK
i o r segment lifetimes r | o r segment lifetimes i
|\ FIN/ACK = FIN/ACK
1 TIME_WAIT_ == ERNCEQEEDAIN \\/ 2 - FalY0%4 TIME_WAIT = CLoSED
__________________ | 7

Connection Termination and State Transition

(2)

e This side closes first

* ESTABLISHED = FIN_WAIT 1 = FIN_WAIT 2 >
TIME_WAIT

e Other side closes first
 ESTABLISHED - CLOSE_WAIT - LAST ACK —> CLOSED

 Both sides close at the same time

* ESTABLISHED = FIN_WAIT_1 - CLOSING - TIME_WAIT
—> CLOSED

TCP Sliding Window: Why Different?

* Potentially connects many different hosts O Potentially different capacity at destination

* need explicit connection establishment need to accommodate different node
and termination capacity
- Potentially different RTT O Potentially different network capacity

L . need to be prepared for network
* need adaptive timeout mechanism congestion

* Potentially long delay in network
* need to be prepared for arrival of very old

packets e ——
.ﬁ-?plicati:m prm:é}:} {E‘%p]:catinn proc?@
1 1
L 1 Write 1 Read
: bytes ¢ bytes
1 1
TCP TCP
Send buffer | Receive buffer|
i
[Segment | [Segment| --- | Segment |

Transmit segments

TCP Sliding Window: Reliable and
Ordered Delivery

TCP uses cumulative acknowledgements to acknowledge receiving of all the bytes up
to the first missing byte

Sending application Receiving application

\ TCP / TCP
LastByteWritten LastByteRead
L Y
! : .
LastByteAcked LastByteSent NextByteExpected LastByteRcvd

* Sending side Receiving side

* LastByteAcked < LastByteSent LastByteRead < NextByteExpected

* LastByteSent < LastByteWritten NextByteExpected < LastByteRcvd +1

* buffer bytes between LastByteAcked and buffer bytes betweenNextByteRead and
LastByteWritten LastByteRcvd

12/4/2024 CISC 3340 MW?2 - Fall 2024 30

TCP Flow Control (1)

* receive side of TCP connection has a -flow control
receive buffer sender won't overflow
* app process may be slow at reading receiver's buffer by
from buffer 41
transmitting too much,
* speed-matching service: matching too fast
the send rate to the receiving app’s
drain rate
Receiving application
\ TCP / TCP
LastByteWritten LastByteRead
Y Y
! ' o
LastByteAcked LastByteSent NextByteExpected LastByteRcvd

12/4/2024 CISC 3340 MW?2 - Fall 2024 31

TCP Flow Control (2)

Send buffer size: MaxSendBuffer

Receive buffer size: MaxRcvBuffer

Receiving side
* LastByteRcvd - LastByteRead < MaxRcvBuffer

* AdvertisedWindow = MaxRcvBuffer — ((NextByteExpected -1) -
LastByteRead)) = maximum possible free space remaining in the buffer

Sending side
* LastByteSent - LastByteAcked < AdvertisedWindow

* LastByteSent — LastByteAcked: unacknowledged bytes sender has put in TCP
* Otherwise, the sender may overrun the receiver

» EffectiveWindow = AdvertisedWindow - (LastByteSent -LastByteAcked) 2>
how much data it can sent

* LastByteWritten - LastByteAcked < MaxSendBuffer

* |f the sender tries to write y bytes to TCP
* block sender if (LastByteWritten - LastByteAcked) + y > MaxSenderBuffer

* Always send ACK in response to arriving data segment

e Persist when AdvertisedWindow =0

FIovv Control and Buffering (3)

0O N O O WODN =

©

10
11
12
13
14
15
16

-

Message

< request 8 buffers>
<ack = 15, buf = 4>
<seq = 0, data = mO>
<seq =1, data =m1i>
<seq = 2, data = m2>
<ack =1, buf = 3>
<seq = 3, data = m3>
<seq = 4, data = m4>
<seq = 2, data = m2>
<ack = 4, buf = 0>
<ack =4, buf = 1>
<ack = 4, buf = 2>
<seq = 5, data = m5>
<seq = 6, data = m6>
<ack = 6, buf = 0>
<ack = 6, buf = 4>

-

-

Comments

A wants 8 buffers

B grants messages 0-3 only

A has 3 buffers left now

A has 2 buffers left now

Message lost but A thinks it has 1 left
B acknowledges 0 and 1, permits 2-4
A has 1 buffer left

A has 0 buffers left, and must stop

A times out and retransmits
Everything acknowledged, but A still blocked
A may now send 5

B found a new buffer somewhere

A has 1 buffer left

A is now blocked again

A is still blocked

Potential deadlock

Dynamic buffer allocation. The arrows show the direction of transmission. An ellipsis (...)
indicates a lost TCP segment

12/4/2024

CISC 3340 MW?2 - Fall 2024 33

Adaptive Retransmission: Original
Algorithm

* Measure SampleRTT for each segment/ACK pair

 Compute weighted average of RTT

e EstimatedRTT = a x EstimatedRTT + B x SampleRTT
e wherea+p=1

* abetween 0.8and 0.9

* B between 0.1 and 0.2

e Set timeout based on EstimatedRTT
e TimeOut = 2 x EstimatedRTT

Example RTT estimation:

RTT (milliseconds)

12/4/2024

350 4

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

300

250

200 -

150

100

8 15 22 29 36 43 50 57 64 71 78 85 92

time (seconnds)

‘—O—SampIeRTT —8&— Estimated RTT ‘

CISC 3340 MW?2 - Fall 2024

99

106

35

Adaptive Retransmission:
Karn/Partridge Algorithm

Problem with original algorithm
ACK does not really acknowledge a transmission, it acknowledges the receipt of data = can not
distinguish an ACK is for which transmission/retransmission of a segment

Sender Receiver Sender Receiver

SampleRTT
SampleRTT

* Do not sample RTT when retransmitting

* Double timeout after each retransmission
* Congestion is the most likely cause of lost segments = TCP should not react too aggressively to a timeout

12/4/2024 CISC 3340 MW?2 - Fall 2024 36

Jacobson/ Karels Algorithm

* Previous approaches did not take the variance of the sample RTT into account

* If no variance, Estimated RTT is good enough, 2 x Estimated RTT is too
pessimistic

* If variance large, timeout value should not be too dependent on Estimated RTT

* New Calculations for average RTT
* Difference = SampleRTT — EstimtaedRTT
* EstimatedRTT = EstimatedRTT + (6 x Difference)
* Deviation = Deviation + §(| Difference| - Deviation)
* where 6 is a factor between 0 and 1
* Consider variance when setting timeout value
* TimeOut = pu x EstimatedRTT + ¢ x Deviation
* wherep=1and =4
* Notes

 algorithm only as good as granularity of clock (500ms on Unix)
e accurate timeout mechanism important to congestion control

TCP: Sequence Number Wrap Around

Bandwidth Time until Wraparound
T1 (1.5 Mbps) 6.4 hours

Ethernet (10 Mbps) 57 minutes

T3 (45 Mbps) 13 minutes

Fast Ethernet (100 Mbps) | 6 minutes

OC-3 (155 Mbps) 4 minutes

OC-12 (622 Mbps) 55 seconds

OC-48 (2.5 Gbps) 14 seconds

Time until 32-bit sequence number space wraps around

12/4/2024 CISC 3340 MW?2 - Fall 2024

TCP: Can Keep Pipe Full?

12/4/2024

Bandwidth

Delay x Bandwidth Product

T1 (1.5 Mbps)
Ethernet (10 Mbps)
T3 (45 Mbps)

18 KB
122 KB
549 KB

Fast Ecthernet (100 Mbps) | 1.2 MB

OC-3 (155 Mbps)
OC-12 (622 Mbps)
OC-48 (2.5 Gbps)

1.8 MB
7.4 MB
29.6 MB

Required window size for 100-ms RTT.

CISC 3340 MW?2 - Fall 2024

39

Solution: TCP Extensions

* Implemented as header options

-------------------- . 0 4 10 16 31
* Store timestamp in outgoing--._ SrcPort DstPort
segments = measure RTT \ SequenceNurm
* Extend sequence space with 32-bit . Acknowedgmnt
timestamp 9 protected against \‘I\-\|eren 0 Flags AdvertisedWindow
sequence number wrap-around '\ Checksum UrgPtr
< - .
* Shift (scale) advertised window = Options (variable)
keep the pipe full W

 Selective acknowledgement (SAC)
- acknowledge any additional
(out-of-order) blocks of received
data

TCP Extensions for High Performance
http://tools.ietf.org/html/rfc1323

http://tools.ietf.org/html/rfc1323

Summary

* User Datagram Protocol
* Multiplexer/Demultiplexer for IP

* Transmission Control Protocol

* Reliable Byte Stream
* Connection-oriented

* Connection establishment

* Connection termination
Automatics Repeated-Request: ACKs and NACKs
Flow-control
Timeout value estimation
Extensions

* Congestion control (another classs?)

	Slide 1: End-to-End Protocols
	Slide 2: Outline
	Slide 3: Network Applications
	Slide 4: Transport Layer Services and Protocols
	Slide 5: Transport vs. Network Layer (1)
	Slide 6: Transport vs. Network Layer (2)
	Slide 7: Internet Transport-Layer Protocols
	Slide 8: Multiplexing/Demultiplexing
	Slide 9: Multiplexing/Demultiplexing
	Slide 10: Simple Demultiplexer (1)
	Slide 11: Processes: Windows Example
	Slide 12: Processes: Linux/Unix Example
	Slide 13: Simple Demultiplexer (2)
	Slide 14: Simple Demultiplexer: UDP
	Slide 15: Exercise 1
	Slide 16: Exercise 2
	Slide 17: Transmission Control Protocol (TCP)
	Slide 18: Data Link Versus Transport
	Slide 19: Segment Format (1)
	Slide 20: Segment Format (2)
	Slide 21: Exercise 3
	Slide 22: Sequence and Acknowledgement Numbers (1)
	Slide 23: Sequence and Acknowledgement Numbers (2)
	Slide 24: TCP is Connection-Oriented
	Slide 25: Connection Establishment
	Slide 26: Connection Termination
	Slide 27: State Transition Diagram
	Slide 28: Connection Establishment and State Transition
	Slide 29: Connection Establishment and State Transition
	Slide 30: Connection Establishment and State Transition
	Slide 31: Connection Establishment and State Transition
	Slide 32: Connection Establishment and State Transition
	Slide 33: Connection Establishment and State Transition
	Slide 34: Connection Establishment and State Transition
	Slide 35: Connection Establishment and State Transition
	Slide 36: Connection Establishment and State Transition
	Slide 37: Connection Establishment and State Transition
	Slide 38: Connection Establishment and State Transition
	Slide 39: Connection Establishment and State Transition
	Slide 40: Connection Establishment and State Transition
	Slide 41: Connection Establishment and State Transition
	Slide 42: Connection Establishment and State Transition
	Slide 43: Connection Establishment and State Transition
	Slide 44: Connection Establishment and State Transition
	Slide 45: Connection Establishment and State Transition
	Slide 46: Connection Establishment and State Transition
	Slide 47: Connection Establishment and State Transition
	Slide 48: Connection Termination and State Transition (1)
	Slide 49: Connection Termination and State Transition (1)
	Slide 50: Connection Termination and State Transition (1)
	Slide 51: Connection Termination and State Transition (1)
	Slide 52: Connection Termination and State Transition (1)
	Slide 53: Connection Termination and State Transition (1)
	Slide 54: Connection Termination and State Transition (1)
	Slide 55: Connection Termination and State Transition (1)
	Slide 56: Connection Termination and State Transition (1)
	Slide 57: Connection Termination and State Transition (1)
	Slide 58: Connection Termination and State Transition (1)
	Slide 59: Connection Termination and State Transition (1)
	Slide 60: Connection Termination and State Transition (1)
	Slide 61: Connection Termination and State Transition (1)
	Slide 62: Connection Termination and State Transition (1)
	Slide 63: Connection Termination and State Transition (1)
	Slide 64: Connection Termination and State Transition (1)
	Slide 65: Connection Termination and State Transition (1)
	Slide 66: Connection Termination and State Transition (1)
	Slide 67: Connection Termination and State Transition (1)
	Slide 68: Connection Termination and State Transition (2)
	Slide 69: TCP Sliding Window: Why Different?
	Slide 70: TCP Sliding Window: Reliable and Ordered Delivery
	Slide 71: TCP Flow Control (1)
	Slide 72: TCP Flow Control (2)
	Slide 73: Flow Control and Buffering (3)
	Slide 74: Adaptive Retransmission: Original Algorithm
	Slide 75: Example RTT estimation:
	Slide 76: Adaptive Retransmission: Karn/Partridge Algorithm
	Slide 77: Jacobson/ Karels Algorithm
	Slide 78: TCP: Sequence Number Wrap Around
	Slide 79: TCP: Can Keep Pipe Full?
	Slide 80: Solution: TCP Extensions
	Slide 81: Summary

