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Outline

• Ethernet frame capturing
• Motivation
• Tools and library
• Using SciPy and a few related basic tasks

• Programming with Ethernet
• Introduction to network application

• Networking communication modes
• Network application models
• Programming and experimentation environment
• Ethernet implementation in practice

• Berkeley sockets for programming Ethernet
• Applications/Upper-layer protocols

• Unicast applications/protocols
• Broadcast applications/protocols
• Multicast application/protocols
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Ethernet Frame Capturing: Why?

• To understand the design of Ethernet and the 
services provided by Ethernet,

• To help design upper layer protocols (protocols 
above Ethernet), and

• To debug network applications and configuration.
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Frame Capture Libraries and Tools

• WireShark (See https://www.wireshark.org/)

• Tcpdump and Libpcap (See 
https://www.tcpdump.org)

• ScaPy (See https://scapy.net/)

• ……
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Frame Capturing using ScaPy

• Several tasks
• Identify Ethernet NICs that a host has

• Identify Ethernet the hosts are on

• Sending frames

• Receiving frames

• Examining frames
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Programming with Ethernet

• Introduction to network application
• Networking communication modes

• Network application models

• Programming and experimentation environment

• Ethernet implementation in practice

• Berkeley sockets for programming Ethernet

• Applications/Upper-layer protocols
• Unicast applications/protocols

• Broadcast applications/protocols

• Multicast application/protocols
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Recall Service and Peer-to-Peer 
Interfaces …
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Network Application

• At least two processes (two running programs, typically at two 
hosts)

• Server logic: listening and processing client’s requests

• Client logic: sending requests to server

• Example setup
• Process A: server logic

• Process B: client logic
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Server and Client Interaction: An 
Example
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Server Client

Server starts

Waits and listens to requests 
Client starts

Sends request

Receives request

Processes request

Sends reply
Receives Reply

Process Reply

Sends Request



Client-Server and Peer-to-Peer 
Models

Client-Server Model

• Server
• Running server logic
• Passively waiting: listening 

to client requests
• Serving client requests

• Client
• Running client logic
• Actively requesting 

service from server 
(sending requests)

Peer-to-Peer Model

• Any of the 
communicating party 
contains both server and 
client logics

• Each party listens to and 
serves requests from 
other parties

• Each party can initiate 
requests and send 
requests
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Hybrid Model Example

• Some hosts act as servers

• Some hosts act as clients

• Some hosts act as both

• Example: BitTorrent
• Searching: centralized

• Downloading: largely decentralized

• Torrent file
• File name, length, hashes of pieces of the file, URL to a tracker
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Connectionless & Connection-
Oriented Modes
• Network applications or protocols can follow either 

one of the two communication modes

• Connectionless communication
• Does not require to establish a connection before 

transmitting data and to tear down the connection after 
transmitting the data

• Connection-oriented communication
• Requires to establish a connection before transmitting 

data
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Connection-Oriented Mode

• Setting up a connection
• Determine whether there is a communication path 

between the two communication parties

• Reserve network resources

• Transmitting and receiving data

• Tearing down the connection
• Release resources
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Choosing Connected-Oriented or 
Connectionless Modes
• Consider application requirement and decide which 

one works best for the application*
• How reliable must the connection be?

• Must the data arrive in the same order as it was sent?

• Must the connection be able to handle duplicate data packets?

• Must the connection have flow control?

• Must the connection acknowledge the messages it receives?

• What kind of service can the application live with?

• What level of performance is required?

• If reliability is paramount, then connection-oriented 
transport services (COTS) is the better choice. 
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Programming with Ethernet

• Writing programs using functionality provided by 
Ethernet adapters and availed by their drivers

• Low-level program for creating network 
applications

• Useful to create new upper-layer network protocols 
or application

• Where is Ethernet?
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Ethernet: Where is it?
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 Infrastructure



Ethernet: Where is it?

• Ethernet Adapter
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Ethernet: Where is it?

• Beside hardware, firmware inside
• Encoding

• Error Detection

• Medium Access Control (CSMA/CD)
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Ethernet: Upper Layer Protocol 
Design and Programming
• How to access functionality of Ethernet adapter?
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Berkeley Sockets

• Protocol provides a set of interfaces → abstract

• API (application programming interface) → how the interfaces exposed 
in a particular operating system

• Berkeley socket interfaces

• APIs to multiple protocols

• Socket: a “point” where an application process attaches to the 
network; “end-point” of communication

Process

Host 1

Process

Host 2
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Programming Ethernet with 
Socket API
• Learn socket APIs to 

• Create a socket

• Send messages via the socket

• Receive message via the socket

• Using C and Linux manual pages
• Python Socket API is a wrapper

• Example programs using a typical setup
• Write two programs (A, B)

• Program A contains and runs the server logic

• Program B contains and runs the client logic
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Creating Socket

int socket(int domain, int type, int 

protocol)

• Creates an endpoint for communication and 
returns a descriptor.

• Look it up in Linux manual: see socket(2)
• which means issue command “man 2 socket”. 
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Communication Domain

• int socket(int domain, int type, 
int protocol)

• AF_PACKET is our interest: Low level packet 
interface

“Packet  sockets  are  used to receive or send raw packets 
at the device  driver (OSI Layer 2) level. They allow the user 
to implement  protocol  modules in user space on top of 
the physical layer.”

• More information, see packet(7)

10/7/2024 CISC 3340 Computer Networks and Protocols 23



Communication Type

• int socket(int domain, int type, 
int protocol)

• Specify a communication semantics with a 
communication domain

• For AF_PACKET domain
• SOCK_RAW: for raw packets (including the link level 

header)

• SOCK_DGRAM: for cooked  packets  (with  the  link  level  
header  removed)
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Protocol

• int socket(int domain, int type, 
int protocol)

• Specifies  a  particular  protocol  to  be used with 
the socket. 

• Protocol is a protocol number in network order

• For AP_PACKET domain
• Protocol can be the  IEEE  802.3  protocol number in 

network order.

• linux/if_ether.h lists acceptable protocol numbers for 
Ethernet (typical location: /usr/include/linux/if_ether.h)
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Protocol Number for Ethernet

• linux/if_ether.h lists acceptable protocol numbers for 
Ethernet
• typical location: /usr/include/linux/if_ether.h

……

#define ETH_P_LOOP  0x0060      /* Ethernet Loopback packet */

#define ETH_P_PUP   0x0200      /* Xerox PUP packet     */

#define ETH_P_PUPAT 0x0201      /* Xerox PUP Addr Trans packet  */

#define ETH_P_IP    0x0800      /* Internet Protocol packet */

……

#define ETH_P_802_3 0x0001      /* Dummy type for 802.3 frames  */

#define ETH_P_AX25  0x0002      /* Dummy protocol id for AX.25  */

#define ETH_P_ALL   0x0003      /* Every packet (be careful!!!) */

……
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Protocol Number

• Which protocol number to use? 

• Depending on payload
• If payload is an IP packet, use ETH_P_IP, i.e., 0x0800

• If payload is an ARP packet, use  ETH_P_ARP, i.e.,    
0x0806 

• If payload is a packet of your own upper layer protocol?
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Protocol Number: Byte Order

• Protocol number must be in network order

• Use functions to convert between host and 
network order

uint32_t htonl(uint32_t hostlong);

uint16_t htons(uint16_t hostshort);

uint32_t ntohl(uint32_t netlong);

uint16_t ntohs(uint16_t netshort);

• Example
• htons (0x0800) or htons(ETH_P_IP)
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Protocol Number: New Protocol

• What about developing a new protocol? 
• Choose a number not used

• May run into the problem that other people also choose  the 
same unused number as you

• Get approval from the IANA

• What about receiving all frames
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Protocol Number: All Frames

• What about receiving all frames

• Use protocol number ETHER_P_ALL

• In network order, htons(ETH_P_ALL) or 
htons(0x0003)
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Putting Together: Raw Packet

#define MY_PROTOCOL_NUM 0x60001

int sockfd;

……

sockfd = socket(AP_PACKET, 

                SOCK_RAW, 

                htons(MY_PROTOCOL_NUM));

if (sockfd == -1) {

     /* deal with error */

}
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Putting Together: Cooked Packet

#define MY_PROTOCOL_NUM 0x60001

int sockfd;

……

sockfd = socket(AP_PACKET, 

                SOCK_DGRAM,

                htons(MY_PROTOCOL_NUM));

if (sockfd == -1) {

     /* deal with error */

}
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Putting Together: All Raw Packet

int sockfd;

……

sockfd = socket(AP_PACKET, 

                SOCK_RAW, 

                htons(ETH_P_ALL));

if (sockfd == -1) {

     /* deal with error */

}
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Sending Messages

ssize_t sendto(int sockfd, const void *buf, size_t 

len, int flags, const struct sockaddr *dest_addr, 

socklen_t addrlen);

ssize_t send(int sockfd, const void *buf, size_t 

len, int flags);

ssize_t write(int fd, const void *buf, size_t 

count);

ssize_t sendmsg(int sockfd, const struct msghdr 

*msg, int flags);
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Sending Messages: Manual Pages

• See send(2)

• See sendto(2)

• See sendmsg(2)

• See write(2)
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Sending Message: Differences

• Relationship among the system calls
• write(fd, buf, len);

  is equivalent to 

   send(sockfd, buf, len, 0);

• send(sockfd, buf, len, flags);

  is equivalent to

   sendto(sockfd, buf, len, flags, NULL, 0);

• write(fd, buf, len);

  is equivalent to 

   sendto(sockfd, buf, len, 0, NULL, 0);
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Sending Messages: sendto(…)

• ssize_t sendto(int sockfd, const void *buf, size_t 
len, int flags, const struct sockaddr *dest_addr, 
socklen_t addrlen);
• sockfd: the file descriptor of the sending socket

• buf: message to send

• len: message length

• flags: the bitwise OR of flags or 0

• dest_addr:  the address of the target

• addrlen: the size of the target address

10/7/2024 CISC 3340 Computer Networks and Protocols 37



Message

• Case 1: raw packet

 sockfd = socket(AP_PACKET, SOCK_RAW, 

                          htons(MY_PROTOCOL_NUM));

• buf contains Ethernet header and data (i.e., payload)

• Case 2: cooked packet

 sockfd = socket(AP_PACKET, SOCK_DGRAM, 

                         htons(MY_PROTOCOL_NUM));

• buf contains data (i.e, payload)
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Destination Address

• struct sockaddr *desk_addr
• struct sockaddr * is a place holder

• desk_addr should points to an instance of struct 
sockaddr_ll
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Link Layer Address

• See packet(7)    

struct sockaddr_ll {

  unsigned short sll_family;   /* Always AF_PACKET */

  unsigned short sll_protocol; /* Physical layer protocol */

  int            sll_ifindex;  /* Interface number */

  unsigned char  sll_pkttype;  /* Packet type */

  unsigned char  sll_halen;    /* Length of address */

  unsigned char  sll_addr[8];  /* Physical layer address */

};
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Receiving Messages

ssize_t recvfrom(int sockfd, void *buf, size_t 

len, int flags, struct sockaddr *src_addr, 

socklen_t *addrlen);

ssize_t recv(int sockfd, void *buf, size_t len, 

int flags);

ssize_t write(int fd, const void *buf, size_t 

count);

ssize_t recvmsg(int sockfd, struct msghdr *msg, 

int flags);
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Receiving Message: Manual Pages

• See recv(2)

• See recvfrom(2)

• See recvmsg(2)

• See read(2)
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Receiving Message: Differences

• Relationship among the system calls
• read(fd, buf, len);

  is equivalent to 

   recv(sockfd, buf, len, 0);

• recv(sockfd, buf, len, flags);

  is equivalent to

   recvfrom(sockfd, buf, len, flags, NULL, NULL);

• read(fd, buf, len);

  is equivalent to 

   recvfrom(sockfd, buf, len, 0, NULL, NULL);
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Message

• Case 1: raw packet

 sockfd = socket(AP_PACKET, SOCK_RAW, 

                          htons(MY_PROTOCOL_NUM));

• buf contains Ethernet header and data (i.e., payload)

• Case 2: cooked packet

 sockfd = socket(AP_PACKET, SOCK_DGRAM, 

                         htons(MY_PROTOCOL_NUM));

• buf contains data (i.e., payload)
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Socket Option

• Packet sockets can be used to configure physical 
layer multicasting and promiscuous mode.

• Get socket option
• int getsockopt(int sockfd, int level, int optname, void 

*optval, socklen_t *optlen);

• Set socket option
• int setsockopt(int sockfd, int level, int optname, const 

void *optval, socklen_t optlen);
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Socket Option: Promiscuous 
Mode
• See packet(7) for PACKET_MR_PROMISC and 

PACKET_ADD_MEMBERSHIP

• See setsockopt(2) and getsockopt(2)
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Putting Together

• Learn from two examples
• Write two programs (A, B) using client & server model
• Program A contains the server logic
• Program B contains the client logic
• Use Ethernet 

• Sample programs (Explore more on your own)

• Two pairs of C programs
• etherinj and ethercap
• ethersend and etherrecv

• Two pairs of Python programs

10/7/2024 CISC 3340 Computer Networks and Protocols 47



Recall: Types of Ethernet 
Addresses
• Unicast, multicast, and broadcast

• Creating broadcast and multicast Ethernet 
applications?
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Experiment Environment

• Use multiple Linux virtual machines

• Recommend Oracle Virtual Box
• Free for Mac OS X, Windows, and Linux

• Support various networking setups

• See class website for additional information
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Summary

• Client-Server and Peer-to-Peer models

• Connection-oriented and Connectionless 
communication modes

• Programming Ethernet with Socket APIs

• Byte order and network order
• If you forgot byte order, continue to study the rest of the 

slides

• Need to know: hton* and ntoh* APIs
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Byte Order: Big Endian and Little 
Endian

• Little Endian
• Low-order byte of a word is stored 

in memory at the lowest address, 
and the high-order byte at the 
highest address → The little end 
comes first

• Big Endian
• high-order byte of a word is stored 

in memory at the lowest address, 
and the low-order byte at the 
highest address → The big end 
comes first
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Endian-ness: Transfer Integer over 
Network
• Integer to transfer: 0x04030201

little-endian: little end comes 
first

04 03 02 01

0 21 3address

10/7/2024
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little-endian

01 02 03 04

0 21 3address

big-endian

01 02 03 04

0 21 3address

big-endian: big end comes 
first

04 03 02 01

0 21 3address

memorymemory

01 02 03 04register 04 03 02 01RegisterOops!

memory

04 03 02 01register

memory

01 02 03 04registerOops!



Network Order
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 Integer to transfer: 0x04030201

x86: little-endian

01 02 03 04

0 21 3Address

PowerPC: big-endian

04 03 02 01

0 21 3Address

htonl(n)

uint32_t   n=

04 03 02 01

0 21 3Address

uint32_t   n= 04 03 02 01

0 21 3Address

uint32_t   m=

uint32_t   m=

ntohl(m)



Network Order
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 Integer to transfer: 0x04030201

x86: little-endian

01 02 03 04

0 21 3Address

PowerPC: big-endian

04 03 02 01

0 21 3Address

htonl(n)

uint32_t   n=

04 03 02 01

0 21 3Address

uint32_t   n= 04 03 02 01

0 21 3Address

uint32_t   m=

uint32_t   m=

ntohl(m)
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