
Ethernet Frame Capturing
and Programming with

Ethernet
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

CISC 3340 Computer Networks and Protocols 110/7/2024

Outline

• Ethernet frame capturing
• Motivation
• Tools and library
• Using SciPy and a few related basic tasks

• Programming with Ethernet
• Introduction to network application

• Networking communication modes
• Network application models
• Programming and experimentation environment
• Ethernet implementation in practice

• Berkeley sockets for programming Ethernet
• Applications/Upper-layer protocols

• Unicast applications/protocols
• Broadcast applications/protocols
• Multicast application/protocols

10/7/2024 CISC 3340 Computer Networks and Protocols 2

Ethernet Frame Capturing: Why?

• To understand the design of Ethernet and the
services provided by Ethernet,

• To help design upper layer protocols (protocols
above Ethernet), and

• To debug network applications and configuration.

10/7/2024 CISC 3340 Computer Networks and Protocols 3

Frame Capture Libraries and Tools

• WireShark (See https://www.wireshark.org/)

• Tcpdump and Libpcap (See
https://www.tcpdump.org)

• ScaPy (See https://scapy.net/)

• ……

10/7/2024 CISC 3340 Computer Networks and Protocols 4

Frame Capturing using ScaPy

• Several tasks
• Identify Ethernet NICs that a host has

• Identify Ethernet the hosts are on

• Sending frames

• Receiving frames

• Examining frames

10/7/2024 CISC 3340 Computer Networks and Protocols 5

Programming with Ethernet

• Introduction to network application
• Networking communication modes

• Network application models

• Programming and experimentation environment

• Ethernet implementation in practice

• Berkeley sockets for programming Ethernet

• Applications/Upper-layer protocols
• Unicast applications/protocols

• Broadcast applications/protocols

• Multicast application/protocols

10/7/2024 CISC 3340 Computer Networks and Protocols 6

Recall Service and Peer-to-Peer
Interfaces …

10/7/2024 CISC 3340 Computer Networks and Protocols 7

Network Application

• At least two processes (two running programs, typically at two
hosts)

• Server logic: listening and processing client’s requests

• Client logic: sending requests to server

• Example setup
• Process A: server logic

• Process B: client logic

10/7/2024 CISC 3340 Computer Networks and Protocols 8

Process A
(Server)

Host 1

Process B
(Client)

Host 2

Server and Client Interaction: An
Example

10/7/2024 CISC 3340 Computer Networks and Protocols 9

Server Client

Server starts

Waits and listens to requests
Client starts

Sends request

Receives request

Processes request

Sends reply
Receives Reply

Process Reply

Sends Request

Client-Server and Peer-to-Peer
Models

Client-Server Model

• Server
• Running server logic
• Passively waiting: listening

to client requests
• Serving client requests

• Client
• Running client logic
• Actively requesting

service from server
(sending requests)

Peer-to-Peer Model

• Any of the
communicating party
contains both server and
client logics

• Each party listens to and
serves requests from
other parties

• Each party can initiate
requests and send
requests

10/7/2024 CISC 3340 Computer Networks and Protocols 10

Hybrid Model combines the both models

Hybrid Model Example

• Some hosts act as servers

• Some hosts act as clients

• Some hosts act as both

• Example: BitTorrent
• Searching: centralized

• Downloading: largely decentralized

• Torrent file
• File name, length, hashes of pieces of the file, URL to a tracker

10/7/2024 CISC 3340 Computer Networks and Protocols 11

Web Server

Tracker

Peer

Peer

Peer

Connectionless & Connection-
Oriented Modes
• Network applications or protocols can follow either

one of the two communication modes

• Connectionless communication
• Does not require to establish a connection before

transmitting data and to tear down the connection after
transmitting the data

• Connection-oriented communication
• Requires to establish a connection before transmitting

data

10/7/2024 CISC 3340 Computer Networks and Protocols 12

Connection-Oriented Mode

• Setting up a connection
• Determine whether there is a communication path

between the two communication parties

• Reserve network resources

• Transmitting and receiving data

• Tearing down the connection
• Release resources

10/7/2024 CISC 3340 Computer Networks and Protocols 13

Choosing Connected-Oriented or
Connectionless Modes
• Consider application requirement and decide which

one works best for the application*
• How reliable must the connection be?

• Must the data arrive in the same order as it was sent?

• Must the connection be able to handle duplicate data packets?

• Must the connection have flow control?

• Must the connection acknowledge the messages it receives?

• What kind of service can the application live with?

• What level of performance is required?

• If reliability is paramount, then connection-oriented
transport services (COTS) is the better choice.

10/7/2024 CISC 3340 Computer Networks and Protocols 14

*From Transport Interfaces Programming Guide, SunSoft, 1995

https://docs.oracle.com/cd/E19620-01/805-4041/index.html

Programming with Ethernet

• Writing programs using functionality provided by
Ethernet adapters and availed by their drivers

• Low-level program for creating network
applications

• Useful to create new upper-layer network protocols
or application

• Where is Ethernet?

10/7/2024 CISC 3340 Computer Networks and Protocols 15

Ethernet: Where is it?

10/7/2024 CISC 3340 Computer Networks and Protocols 16

 Infrastructure

Ethernet: Where is it?

• Ethernet Adapter

10/7/2024 CISC 3340 Computer Networks and Protocols 17

Ethernet: Where is it?

• Beside hardware, firmware inside
• Encoding

• Error Detection

• Medium Access Control (CSMA/CD)

10/7/2024 CISC 3340 Computer Networks and Protocols 18

Ethernet: Upper Layer Protocol
Design and Programming
• How to access functionality of Ethernet adapter?

10/7/2024 CISC 3340 Computer Networks and Protocols 19

Host-to-network layer

Network layer

Transport Layer

Application
Layer

Application
&
Operating
System

Driver
software

OS System
Calls and APIs

Berkeley Sockets

• Protocol provides a set of interfaces → abstract

• API (application programming interface) → how the interfaces exposed
in a particular operating system

• Berkeley socket interfaces

• APIs to multiple protocols

• Socket: a “point” where an application process attaches to the
network; “end-point” of communication

Process

Host 1

Process

Host 2

10/7/2024 20CISC 3340 Computer Networks and Protocols

Programming Ethernet with
Socket API
• Learn socket APIs to

• Create a socket

• Send messages via the socket

• Receive message via the socket

• Using C and Linux manual pages
• Python Socket API is a wrapper

• Example programs using a typical setup
• Write two programs (A, B)

• Program A contains and runs the server logic

• Program B contains and runs the client logic

10/7/2024 21CISC 3340 Computer Networks and Protocols

Creating Socket

int socket(int domain, int type, int

protocol)

• Creates an endpoint for communication and
returns a descriptor.

• Look it up in Linux manual: see socket(2)
• which means issue command “man 2 socket”.

10/7/2024 CISC 3340 Computer Networks and Protocols 22

Communication Domain

• int socket(int domain, int type,
int protocol)

• AF_PACKET is our interest: Low level packet
interface

“Packet sockets are used to receive or send raw packets
at the device driver (OSI Layer 2) level. They allow the user
to implement protocol modules in user space on top of
the physical layer.”

• More information, see packet(7)

10/7/2024 CISC 3340 Computer Networks and Protocols 23

Communication Type

• int socket(int domain, int type,
int protocol)

• Specify a communication semantics with a
communication domain

• For AF_PACKET domain
• SOCK_RAW: for raw packets (including the link level

header)

• SOCK_DGRAM: for cooked packets (with the link level
header removed)

10/7/2024 CISC 3340 Computer Networks and Protocols 24

Protocol

• int socket(int domain, int type,
int protocol)

• Specifies a particular protocol to be used with
the socket.

• Protocol is a protocol number in network order

• For AP_PACKET domain
• Protocol can be the IEEE 802.3 protocol number in

network order.

• linux/if_ether.h lists acceptable protocol numbers for
Ethernet (typical location: /usr/include/linux/if_ether.h)

10/7/2024 CISC 3340 Computer Networks and Protocols 25

Protocol Number for Ethernet

• linux/if_ether.h lists acceptable protocol numbers for
Ethernet
• typical location: /usr/include/linux/if_ether.h

……

#define ETH_P_LOOP 0x0060 /* Ethernet Loopback packet */

#define ETH_P_PUP 0x0200 /* Xerox PUP packet */

#define ETH_P_PUPAT 0x0201 /* Xerox PUP Addr Trans packet */

#define ETH_P_IP 0x0800 /* Internet Protocol packet */

……

#define ETH_P_802_3 0x0001 /* Dummy type for 802.3 frames */

#define ETH_P_AX25 0x0002 /* Dummy protocol id for AX.25 */

#define ETH_P_ALL 0x0003 /* Every packet (be careful!!!) */

……

10/7/2024 CISC 3340 Computer Networks and Protocols 26

Protocol Number

• Which protocol number to use?

• Depending on payload
• If payload is an IP packet, use ETH_P_IP, i.e., 0x0800

• If payload is an ARP packet, use ETH_P_ARP, i.e.,
0x0806

• If payload is a packet of your own upper layer protocol?

10/7/2024 CISC 3340 Computer Networks and Protocols 27

Protocol Number: Byte Order

• Protocol number must be in network order

• Use functions to convert between host and
network order

uint32_t htonl(uint32_t hostlong);

uint16_t htons(uint16_t hostshort);

uint32_t ntohl(uint32_t netlong);

uint16_t ntohs(uint16_t netshort);

• Example
• htons (0x0800) or htons(ETH_P_IP)

10/7/2024 CISC 3340 Computer Networks and Protocols 28

Protocol Number: New Protocol

• What about developing a new protocol?
• Choose a number not used

• May run into the problem that other people also choose the
same unused number as you

• Get approval from the IANA

• What about receiving all frames

10/7/2024 CISC 3340 Computer Networks and Protocols 29

https://www.iana.org/

Protocol Number: All Frames

• What about receiving all frames

• Use protocol number ETHER_P_ALL

• In network order, htons(ETH_P_ALL) or
htons(0x0003)

10/7/2024 CISC 3340 Computer Networks and Protocols 30

Putting Together: Raw Packet

#define MY_PROTOCOL_NUM 0x60001

int sockfd;

……

sockfd = socket(AP_PACKET,

 SOCK_RAW,

 htons(MY_PROTOCOL_NUM));

if (sockfd == -1) {

 /* deal with error */

}

10/7/2024 CISC 3340 Computer Networks and Protocols 31

Putting Together: Cooked Packet

#define MY_PROTOCOL_NUM 0x60001

int sockfd;

……

sockfd = socket(AP_PACKET,

 SOCK_DGRAM,

 htons(MY_PROTOCOL_NUM));

if (sockfd == -1) {

 /* deal with error */

}

10/7/2024 CISC 3340 Computer Networks and Protocols 32

Putting Together: All Raw Packet

int sockfd;

……

sockfd = socket(AP_PACKET,

 SOCK_RAW,

 htons(ETH_P_ALL));

if (sockfd == -1) {

 /* deal with error */

}

10/7/2024 CISC 3340 Computer Networks and Protocols 33

Sending Messages

ssize_t sendto(int sockfd, const void *buf, size_t

len, int flags, const struct sockaddr *dest_addr,

socklen_t addrlen);

ssize_t send(int sockfd, const void *buf, size_t

len, int flags);

ssize_t write(int fd, const void *buf, size_t

count);

ssize_t sendmsg(int sockfd, const struct msghdr

*msg, int flags);

10/7/2024 34CISC 3340 Computer Networks and Protocols

Sending Messages: Manual Pages

• See send(2)

• See sendto(2)

• See sendmsg(2)

• See write(2)

10/7/2024 CISC 3340 Computer Networks and Protocols 35

Sending Message: Differences

• Relationship among the system calls
• write(fd, buf, len);

 is equivalent to

 send(sockfd, buf, len, 0);

• send(sockfd, buf, len, flags);

 is equivalent to

 sendto(sockfd, buf, len, flags, NULL, 0);

• write(fd, buf, len);

 is equivalent to

 sendto(sockfd, buf, len, 0, NULL, 0);

10/7/2024 CISC 3340 Computer Networks and Protocols 36

Sending Messages: sendto(…)

• ssize_t sendto(int sockfd, const void *buf, size_t
len, int flags, const struct sockaddr *dest_addr,
socklen_t addrlen);
• sockfd: the file descriptor of the sending socket

• buf: message to send

• len: message length

• flags: the bitwise OR of flags or 0

• dest_addr: the address of the target

• addrlen: the size of the target address

10/7/2024 CISC 3340 Computer Networks and Protocols 37

Message

• Case 1: raw packet

 sockfd = socket(AP_PACKET, SOCK_RAW,

 htons(MY_PROTOCOL_NUM));

• buf contains Ethernet header and data (i.e., payload)

• Case 2: cooked packet

 sockfd = socket(AP_PACKET, SOCK_DGRAM,

 htons(MY_PROTOCOL_NUM));

• buf contains data (i.e, payload)

10/7/2024 CISC 3340 Computer Networks and Protocols 38

Destination Address

• struct sockaddr *desk_addr
• struct sockaddr * is a place holder

• desk_addr should points to an instance of struct
sockaddr_ll

10/7/2024 CISC 3340 Computer Networks and Protocols 39

Link Layer Address

• See packet(7)

struct sockaddr_ll {

 unsigned short sll_family; /* Always AF_PACKET */

 unsigned short sll_protocol; /* Physical layer protocol */

 int sll_ifindex; /* Interface number */

 unsigned char sll_pkttype; /* Packet type */

 unsigned char sll_halen; /* Length of address */

 unsigned char sll_addr[8]; /* Physical layer address */

};

10/7/2024 CISC 3340 Computer Networks and Protocols 40

Receiving Messages

ssize_t recvfrom(int sockfd, void *buf, size_t

len, int flags, struct sockaddr *src_addr,

socklen_t *addrlen);

ssize_t recv(int sockfd, void *buf, size_t len,

int flags);

ssize_t write(int fd, const void *buf, size_t

count);

ssize_t recvmsg(int sockfd, struct msghdr *msg,

int flags);

10/7/2024 41CISC 3340 Computer Networks and Protocols

Receiving Message: Manual Pages

• See recv(2)

• See recvfrom(2)

• See recvmsg(2)

• See read(2)

10/7/2024 CISC 3340 Computer Networks and Protocols 42

Receiving Message: Differences

• Relationship among the system calls
• read(fd, buf, len);

 is equivalent to

 recv(sockfd, buf, len, 0);

• recv(sockfd, buf, len, flags);

 is equivalent to

 recvfrom(sockfd, buf, len, flags, NULL, NULL);

• read(fd, buf, len);

 is equivalent to

 recvfrom(sockfd, buf, len, 0, NULL, NULL);

10/7/2024 CISC 3340 Computer Networks and Protocols 43

Message

• Case 1: raw packet

 sockfd = socket(AP_PACKET, SOCK_RAW,

 htons(MY_PROTOCOL_NUM));

• buf contains Ethernet header and data (i.e., payload)

• Case 2: cooked packet

 sockfd = socket(AP_PACKET, SOCK_DGRAM,

 htons(MY_PROTOCOL_NUM));

• buf contains data (i.e., payload)

10/7/2024 CISC 3340 Computer Networks and Protocols 44

Socket Option

• Packet sockets can be used to configure physical
layer multicasting and promiscuous mode.

• Get socket option
• int getsockopt(int sockfd, int level, int optname, void

*optval, socklen_t *optlen);

• Set socket option
• int setsockopt(int sockfd, int level, int optname, const

void *optval, socklen_t optlen);

10/7/2024 CISC 3340 Computer Networks and Protocols 45

Socket Option: Promiscuous
Mode
• See packet(7) for PACKET_MR_PROMISC and

PACKET_ADD_MEMBERSHIP

• See setsockopt(2) and getsockopt(2)

10/7/2024 CISC 3340 Computer Networks and Protocols 46

Putting Together

• Learn from two examples
• Write two programs (A, B) using client & server model
• Program A contains the server logic
• Program B contains the client logic
• Use Ethernet

• Sample programs (Explore more on your own)

• Two pairs of C programs
• etherinj and ethercap
• ethersend and etherrecv

• Two pairs of Python programs

10/7/2024 CISC 3340 Computer Networks and Protocols 47

Recall: Types of Ethernet
Addresses
• Unicast, multicast, and broadcast

• Creating broadcast and multicast Ethernet
applications?

10/7/2024 CISC 3340 Computer Networks and Protocols 48

Experiment Environment

• Use multiple Linux virtual machines

• Recommend Oracle Virtual Box
• Free for Mac OS X, Windows, and Linux

• Support various networking setups

• See class website for additional information

10/7/2024 CISC 3340 Computer Networks and Protocols 49

Summary

• Client-Server and Peer-to-Peer models

• Connection-oriented and Connectionless
communication modes

• Programming Ethernet with Socket APIs

• Byte order and network order
• If you forgot byte order, continue to study the rest of the

slides

• Need to know: hton* and ntoh* APIs

10/7/2024 50CISC 3340 Computer Networks and Protocols

Byte Order: Big Endian and Little
Endian

• Little Endian
• Low-order byte of a word is stored

in memory at the lowest address,
and the high-order byte at the
highest address → The little end
comes first

• Big Endian
• high-order byte of a word is stored

in memory at the lowest address,
and the low-order byte at the
highest address → The big end
comes first

10/7/2024 CISC 3340 Computer Networks and Protocols 51

Endian-ness: Transfer Integer over
Network
• Integer to transfer: 0x04030201

little-endian: little end comes
first

04 03 02 01

0 21 3address

10/7/2024
52

CISC 3340 Computer Networks and Protocols

little-endian

01 02 03 04

0 21 3address

big-endian

01 02 03 04

0 21 3address

big-endian: big end comes
first

04 03 02 01

0 21 3address

memorymemory

01 02 03 04register 04 03 02 01RegisterOops!

memory

04 03 02 01register

memory

01 02 03 04registerOops!

Network Order

10/7/2024 CISC 3340 Computer Networks and Protocols 53

 Integer to transfer: 0x04030201

x86: little-endian

01 02 03 04

0 21 3Address

PowerPC: big-endian

04 03 02 01

0 21 3Address

htonl(n)

uint32_t n=

04 03 02 01

0 21 3Address

uint32_t n= 04 03 02 01

0 21 3Address

uint32_t m=

uint32_t m=

ntohl(m)

Network Order

10/7/2024 CISC 3340 Computer Networks and Protocols 54

 Integer to transfer: 0x04030201

x86: little-endian

01 02 03 04

0 21 3Address

PowerPC: big-endian

04 03 02 01

0 21 3Address

htonl(n)

uint32_t n=

04 03 02 01

0 21 3Address

uint32_t n= 04 03 02 01

0 21 3Address

uint32_t m=

uint32_t m=

ntohl(m)

	Slide 1: Ethernet Frame Capturing and Programming with Ethernet
	Slide 2: Outline
	Slide 3: Ethernet Frame Capturing: Why?
	Slide 4: Frame Capture Libraries and Tools
	Slide 5: Frame Capturing using ScaPy
	Slide 6: Programming with Ethernet
	Slide 7: Recall Service and Peer-to-Peer Interfaces …
	Slide 8: Network Application
	Slide 9: Server and Client Interaction: An Example
	Slide 10: Client-Server and Peer-to-Peer Models
	Slide 11: Hybrid Model Example
	Slide 12: Connectionless & Connection-Oriented Modes
	Slide 13: Connection-Oriented Mode
	Slide 14: Choosing Connected-Oriented or Connectionless Modes
	Slide 15: Programming with Ethernet
	Slide 16: Ethernet: Where is it?
	Slide 17: Ethernet: Where is it?
	Slide 18: Ethernet: Where is it?
	Slide 19: Ethernet: Upper Layer Protocol Design and Programming
	Slide 20: Berkeley Sockets
	Slide 21: Programming Ethernet with Socket API
	Slide 22: Creating Socket
	Slide 23: Communication Domain
	Slide 24: Communication Type
	Slide 25: Protocol
	Slide 26: Protocol Number for Ethernet
	Slide 27: Protocol Number
	Slide 28: Protocol Number: Byte Order
	Slide 29: Protocol Number: New Protocol
	Slide 30: Protocol Number: All Frames
	Slide 31: Putting Together: Raw Packet
	Slide 32: Putting Together: Cooked Packet
	Slide 33: Putting Together: All Raw Packet
	Slide 34: Sending Messages
	Slide 35: Sending Messages: Manual Pages
	Slide 36: Sending Message: Differences
	Slide 37: Sending Messages: sendto(…)
	Slide 38: Message
	Slide 39: Destination Address
	Slide 40: Link Layer Address
	Slide 41: Receiving Messages
	Slide 42: Receiving Message: Manual Pages
	Slide 43: Receiving Message: Differences
	Slide 44: Message
	Slide 45: Socket Option
	Slide 46: Socket Option: Promiscuous Mode
	Slide 47: Putting Together
	Slide 48: Recall: Types of Ethernet Addresses
	Slide 49: Experiment Environment
	Slide 50: Summary
	Slide 51: Byte Order: Big Endian and Little Endian
	Slide 52: Endian-ness: Transfer Integer over Network
	Slide 53: Network Order
	Slide 54: Network Order

