Direct Link Networks:
Reliable Transmission

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College

Direct Link Networks

* Types of Networks * Encoding
* Point-to-point * Encoding bits onto

* Framing
* Delineating sequence of bits
into messages
* Error detection

* Detecting errors and acting
on them

Osl TCP/IP

7 Application Application * Re"able de'“’ery
. * Making links appear
6 Presentation N
~_ Not present : :

_ [Pt Ll reliable despite errors

5 Session e .
* Media access control
4 Transport Transport L.
* Mediating access to shared
3 Network Internet | k
. IN

2 Data link Host-to-network
1 Physical

Reliable Transmission

* How to make unreliable links appear to be reliable?

* What to do when a receiver detects that the
received frame contains an error?

Acknowledgment and Time-Out

* Two fundamental mechanisms to make channels
appear to be error-free

* Acknowledgements (ACK)
* Time out

* Automatic Repeat Request (ARQ)
e Stop-and-Wait
* Sliding Window
* Concurrent Logical Channels

* Discuss Stop-and-Wait and Sliding Window
protocols in the context of point-to-point links

Stop-and-Wait

* Sender transmits a frame

e Sender waits for an acknowledgement before
transmitting the next frame

* If no acknowledgement arrives after a time-out, the
sender times out and retransmits the original frame

Stop-and-Wait: Example Scenarios

Sender Receiver Sender Receiver
T, i,
_.5 -\-\--\-"\--_____H__\- E -\--\-_"'-\-.______
= = AR — g B
___,_,—'-' ‘_:J"_-_,_,—'—'
-~
= S ~Frap,
E M""H-.___
: =
= ACE—
—"'-'-'_F
B
Sendor Receiver Sender Receiver
__H%E%'Eﬁihg - Ei “H‘Ffﬂq-&.
” — =] e
: > |] ey
é e h{jf- e
F: 2 _'_‘_,_,_o—'—'_-f
i [,
_'“"m.______F % Bt S 0Y
. = i o
% T 2 ’!"E'E’”'__
e - _—"_'_'-F-
||| e —
s

8/29/2016 CISC 3340 Computer Networks and Protocols 6

Design Consideration

* We may experience

* Frame is lost
* Ackis lost
* Duplicate frame

Timeout?

 How long should the receiver wait?
* Frame is lost
* Ackis lost

Sender Receiver
Frameo
* Timeout: often 2 x RTT or more ... -

rame 7

pck

rame 0

pcK 0

iy

8/29/2016 CISC 3340 Computer Networks and Protocols

Frame sequence number?

* How do we differentiate duplicate frame from new
frame?

* Introduce frame sequence number
* But how many bits?

Performance Analysis

A
F .

v rame

A
Propagation delay

Queuing & processing &
delay v S

Ack

] ‘-—-—~________~___ time
time

data

8/29/2016 CISC 3340 Computer Networks and Protocols

Example

* Link bandwidth: 10 Gbps

* RTT =40 ms

* Frame size = 1500 bytes

* Acknowledgement size = 64 bytes
* Timeout: 2 x RTT

* Assume processing delay is O

* Stop-and-Wait protocol: receiver transmits
acknowledge frame upon receiving the data frame

* Q: what is the maximum throughput (effective bandwidth)?

Throughput

Q: what is the maximum
throughput (effective
bandwidth)?

Note:tp=pl+p2=1RTT
Transfer time = tx1 + tx2 + tp

Throughput =
Transfer size/Transfer time

Q: Is this a good protocol?

Exercise

e Data frame size (data) = 1500 bytes
* Acknowledgement frame size (ack) = 64 bytes

e Stop-and-Wait protocol: receiver is forced to wait 1 RTT
before transmitting acknowledgement frame after having
received data frame. No additional processing and queueing
delay

* Draw timeline diagram first, and then compute throughputs
and link bandwidth utilization for one of the following,
 Dial-up
* RTT =87 ps; Link bandwidth: 56 Kbps

e Satellite
* RTT = 230 ms; Link bandwidth: 45 Mbps

8/29/2016 CISC 3340 Computer Networks and Protocols 13

Stop-and-Wait

* Advantage

e Simple

* Achieve reliable transmission on non-reliable medium
* Disadvantage

* Performance can be poor for some links

* Could you give an intuitive explanation why the
performance is poor, and for what type of links?

Stop-and-Wait

* Does not keep the pipe full for some links!
 Q: How much data are needed to keep the pipe full?
* Product of Delay x Link Bandwidth

* (1 xRTT)x 10 Gbps=1 x40 ms x 10 Gbps =400 Mb =50 MB
* 50 MB/1500 bytes = 33333 frames

e 1500 bytes << the product = low link utilization

: : One-Way RTT x
Link Type Bandwidth Distance RTT Bandwidth
Wireless LAN | 54 Mbps 50m 0.33 us 18 bits
Satellite 1 Gbps 35,000 km 230 ms 230 Mb
fCiLoesrs'CO“”try 10 Gbps 4,000 km 40 ms 400 Mb

Q: How to keep the pipe full?

8/29/2016

CISC 3340 Computer Networks and Protocols

15

How to keep the “pipe” full?

How to keep the “pipe” full?

* Sliding window

* Concurrent logical channels

Sliding Window Algorithm

e Allow multiple Sender Receiver
unacknowledged frames
(send a few frames in a
batch) =» try to fill the

pipe B =W M

* Define a time window fie- __—osaiu
(threshold, or upper
bound) on

Time
\ |
u
‘
|
I\
l. |

unacknowledged frames e Ty
* Sending window e Sy e e

* Receiving window] ~— -

e Have variations
e See animations online

8/29/2016 CISC 3340 Computer Networks and Protocols 18

Sliding Windows Algorithm: Sender

* Assign sequence number to each frame (SegNum)

* Maintain three state variables:
* Send Window Size (SWS)
* Last Acknowledgment Received (LAR)
e Last Frame Sent (LFS)

* Maintain invariant: LFS - LAR <= SWS
Advance LAR when ACK arrives
Buffer up to SWS frames

Sender Window Size > <SWS
o 2 (N O 5
Last Acknowledge Received t ! Last Frame Sent

———>LAR LFS «—

Sliding Windows Algorithm: Receiver

* Maintain three state variables
* Receive Window Size (RWS)
* Largest Acceptable Frame (LAF)
* Last Frame Received (LFR)

Maintain invariant: LAF - LFR <= RWS

* Framege,num arrives:
e if LFR < SegNum < = LAF, accept the frame
e if SegqNum < = LFR or SegNum > LAF, discard the frame

SegNumToAck: largest sequence number not yet acknowledged

ACK is cumulative = ACK all frames with less or equal SeqNum

Receiver Window Size » <RWS
R | | | s
§ | HEEN HEE
Last Frame Received } b lar
gest Acceptable Frame
" LFR LAF «—

8/29/2016 CISC 3340 Computer Networks and Protocols 20

Example: No Frame “Loss”

Sender Receiver

Example: Frame “Loss”

* Frame 6 is lost

Sender

Receiver

Time out

Time out

d
<

Time out

8/29/2016

SegNumToAck=6

Buffered, but no
ACK sent

Buffered, but no
ACK sent

Buffered, but no
ACK sent

Acknowledge accumulated

CISC 3340 Computer Networks and Protocols

frames

22

Sliding Window Algorithm: SWS and
RWS

* SWS should be determined by the product of delay
x bandwidth

* RWS does not have to be equal to SWS

* RWS =1, does not buffer any frames that arrive out of
order

* RWS > SWS is meaningless, since it is impossible for
more than SWS frames to arrive out of order

Examples

* Consider following sliding window algorithm

* Caution: Parameters chosen for demos only. In reality they need to
be carefully chosen. Check footnote in page 108.

e Timeout=2xRTT

* SWS (send window size) = 4
* Determined by delay x bandwidth. Again check footnote in page 108.

* RWS (receive window size) = 4

* Show timeline diagrams for the following scenarios
* Frame 5 lost
* Frame 6 lost
* Frames 5-8 lost
 ACK 6 lost

e ACK 8 lost and no more frames to send (for an extended period of
time)

Sliding Window Algorithm:
Implementation — Data Structures

tyvpedef u_char SwpSegno;

tyvpedef struct {
SwpSeqno Seglhun: /* sequence number of this frame */
SwpSeqno AckMum: J* ack of received frame */
1_char Flags; J* up to B bkits worth of flags */

} SwpHdr;

Cyvpedef struct {
/* mender gide state: */

SwpSedqno LAR /* seqno of last ACE received */
SwpSedqno LFS; /¥ last frame =sent */
Semaphors sendWindowiotFull:;
SwpHAr hdr; /* pre-initialized header */
struct send) slot {

Event timsout;

/* event associated with send-timeout */
Mag madg;

1 sendQ [SWS] ;

/* receiver gide state: */
SwpSeqno NFE;

S* segno of next frams expected */
atruct recvo _slot {

int received; /* is msg wvalid? */
M=aqg mad;
} recvQ[REWS];
1 Swpitate;

8/29/2016 CISC 3340 Computer Networks and Protocols

Sliding Window Algorithm:
Implementation — Sending

static int
sendSWE(SwpState *zstate, Msg *frams)
{

struct sendQ =slot *slot;

hibuf [HLEM] :

/* walt for send window to open */

semWalt (&state-rsendWindowMNotFull) ;

state->hdr.Segqilium = ++stCate-=LFE;

slot = &state->gendl[state->hdr.Seglham % SWE] ;

store swp hdr(state-zhdr, hbuf);

msghddHdr (fram=, hlbaf, HLEM) :

megoaveCopy (&slot->msqg, fram=);

slot-=timeocut = evSchedule (swpTimsout, slot,
SWP_SEND_TIMECUT) ;

return send(LINE, frame) ;

¥

8/29/2016 CISC 3340 Computer Networks and Protocols

26

Sliding Window Algorithm:

Implementation — Receiving (1)

static int
deliverSWP (SwpState state, Msg *frame)
{

SwpHdr hdr;

char *hbut:

hbuf = megStripHdr (frams, HLEHN) ;
load swp hdr(shdr, hbuf)
if (hdr->Flags & FLAG ACE VALID)

{
/* received an ackhnowledgment---do SEMDER side */
if (swpInWindow (hdr.2okMNum, state->LAR + 1,
state-=LFS))
{
s [w]
{
struct sendQ_slot *sloft:
glot = Lestate-»gendQ[++state->LAR % SWS] :
evlancel (slot-=timecut) ;
maglDestroyi(&slot-=msg) ;
semSignal (&state-rzendWindowNotFull) ;
} while (state->LAR != hdr.AckMNum) :
1
b

8/29/2016 CISC 3340 Computer Networks and Protocols

27

Sliding Window Algorithm:
mplementation — Receiving (2)

if (hdr.Flags & FLAG _HAS DATA)
{

struct reowl _slot *slot;

/* received data packet---do EECEIVER side */
glot = &state-srecvi[hdr.Seqilum % EWS] :

1f (!swpInWindow (hdr.Seqium, state->NFE, if (hdr.SeqiNum == state->NFE)
state->NFE + EWs - 1)) [
{ Msg m;
J* drop the message */
y SEETELL Hl b while (glot->received)
, {
msg&a?eCopyi&alot—}msg, frame) ; deliver (HLP, &slot->msg):
slot->recelved = TRUE; megDestroy (&slot->msg) ;

glot-=received = FALSE;
glot = Lstate->recvip[++state-=NFE % EWS];
o
f* mend ACEK: */
prepare _ack(&m, state-=NFE - 1) ;
send (LINE, &m) ;
mesglestroy (L) ;

1
return SUCCESS:

8/29/2016 CISC 3340 Computer Networks and Protocols 28

Exercise

* Draw a timeline diagram for the sliding window
algorithm with SWS=RWS=3 frames in the following
two situations (draw two time diagrams for each
situation). Use a timeout interval of 2 x RTT

* Frame 4 is lost
* Frame 4-6 are lost

Discussion

e Alternatives or improvement
* Negative Acknowledgement (NAK)
* Selective Acknowledgement

* Finite sequence numbers and sliding window
* Frame order and flow control

Concurrent Logical Channels

* To keep the “pipe” full
* simply multiplex several logical channels onto a single point-
to-point link
* i.e., maintain pairs of logical senders and receivers

* to run the stop-and-wait algorithm on each of these logical
channels.

* Implementation consideration

* the sender keeps a state for each channel
* whether the channel is currently busy

* the 1-bit sequence number to use the next time a frame is sent on
this logical channel

* the next sequence number to expect on a frame that arrives on
this channel

 When the node has a frame to send, it uses the lowest idle
channel, and otherwise it behaves just like stop-and-wait.

Summary

* Reliable delivery
* Timeout and Acknowledgement

* Performance analysis of Stop-and-Wait

* |[dea: how to keep the pipe full
* Sliding window algorithm
* Concurrent logical channels

* How to implement?
* Consult the book

	Slide 1: Direct Link Networks: Reliable Transmission
	Slide 2: Direct Link Networks
	Slide 3: Reliable Transmission
	Slide 4: Acknowledgment and Time-Out
	Slide 5: Stop-and-Wait
	Slide 6: Stop-and-Wait: Example Scenarios
	Slide 7: Design Consideration
	Slide 8: Timeout?
	Slide 9: Frame sequence number?
	Slide 10: Performance Analysis
	Slide 11: Example
	Slide 12: Throughput
	Slide 13: Exercise
	Slide 14: Stop-and-Wait
	Slide 15: Stop-and-Wait
	Slide 16: How to keep the “pipe” full?
	Slide 17: How to keep the “pipe” full?
	Slide 18: Sliding Window Algorithm
	Slide 19: Sliding Windows Algorithm: Sender
	Slide 20: Sliding Windows Algorithm: Receiver
	Slide 21: Example: No Frame “Loss”
	Slide 22: Example: Frame “Loss”
	Slide 23: Sliding Window Algorithm: SWS and RWS
	Slide 24: Examples
	Slide 25: Sliding Window Algorithm: Implementation – Data Structures
	Slide 26: Sliding Window Algorithm: Implementation – Sending
	Slide 27: Sliding Window Algorithm: Implementation – Receiving (1)
	Slide 28: Sliding Window Algorithm: Implementation – Receiving (2)
	Slide 29: Exercise
	Slide 30: Discussion
	Slide 31: Concurrent Logical Channels
	Slide 32: Summary

