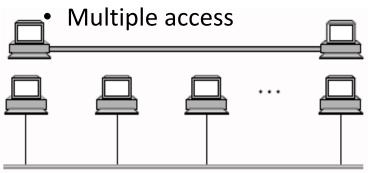
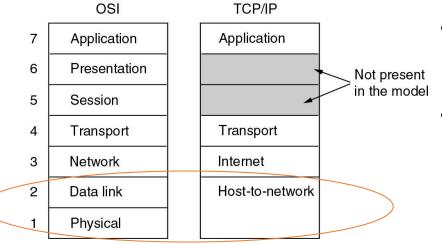
### Direct Link Networks: Error Detection


Hui Chen


Department of Computer & Information Science

**CUNY Brooklyn College** 

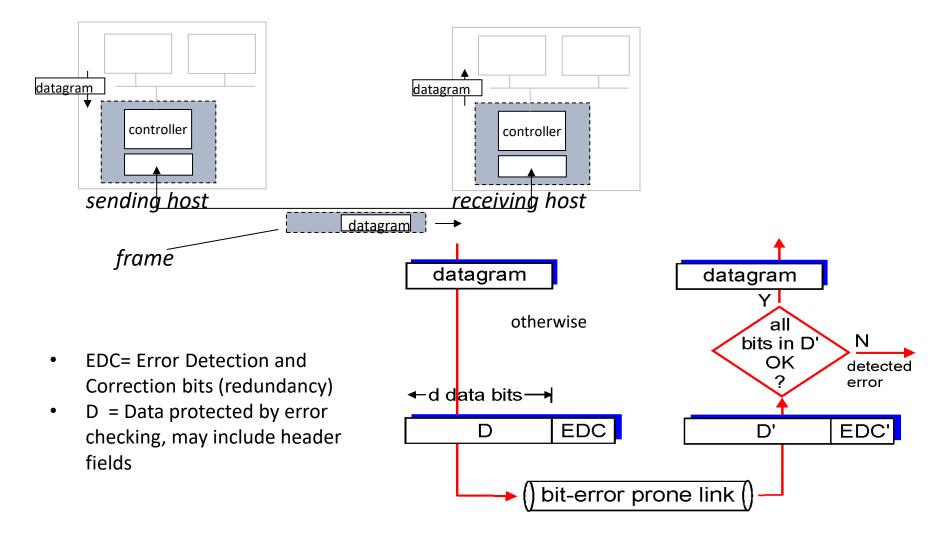
### Direct Link Networks

- Types of Networks
  - Point-to-point



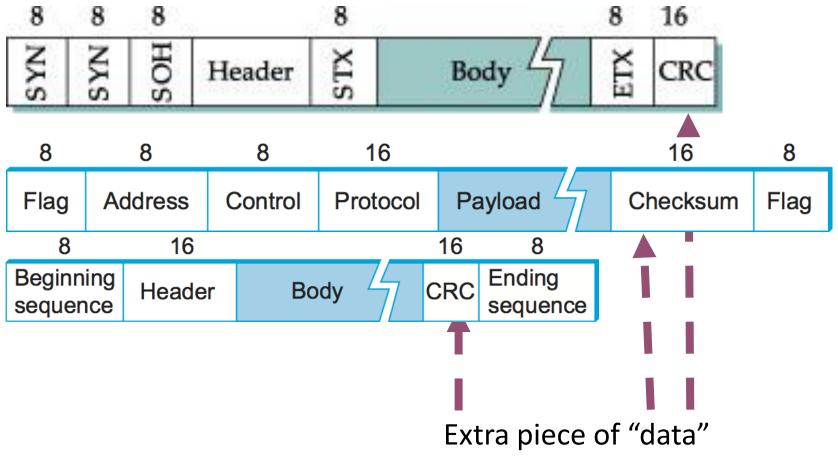


- Encoding
  - Encoding bits onto transmission medium
- Framing
  - Delineating sequence of bits into messages
- Error detection
  - Detecting errors and acting on them
- Reliable delivery
  - Making links appear reliable despite errors
- Media access control
  - Mediating access to shared link


### Things Can Go Wrong ...

How does a receiver know that a frame contains error?

### **Error Detection**


• Determine that the received contains error

### **Error Detection**

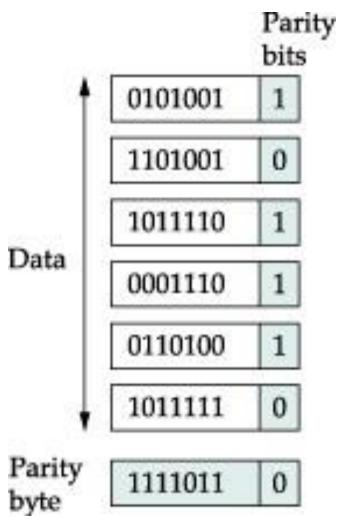


# Additional Data for Error Detection

Recall the BISYNC, PPP, and HDLC frame formats



### Error Detection Code


- Two Examples
  - Two-dimensional parity
    - Illustrating example, not used in practice (but why?)
  - Cyclic redundancy code

### Parity Check

- Append a parity bit to each character
- Even parity
  - Set the parity bit as either 0 or 1 such that the number of 1's in the character is <u>EVEN</u>
- Odd parity
  - Set the parity bit as either 0 or 1 such that the number of 1's in the character is <u>ODD</u>

### **Two-Dimensional Parity**

- Assume event parity is used
- Parity carried out on both directions
- Each byte has a parity bit
  - Even number of 1's: 1 → parity bit
- Each frame has a parity byte
  - Event number of 1's: 1 → corresponding bit in parity byte



### Exercise

• Q1: Sending the following message over a link

#### H ELO

determine its two-dimensional parity bits and byte.

Assume using the ASCII code (7 bits, **not** the Extended ASCII).

- Q2: In above case, show an example of received "frame" (i.e., data // parity bits and byte) that has detectable error. Include both data bits and parity bits and byte.
- Q3: Show an example of received "frame" (i.e., data // parity bits and byte) that has non-detectable error.

### How Good is Two-Dimensional Parity?

- What types of errors does it catch?
  - Any 1-bit error? 2-bit error? 3-bit error? 4-bit error? ...
- How much extra data are needed to detect errors?
- How computational efficient is the algorithms to compute the EDC and detect errors?

### Introducing Cyclic Redundant Check

- Error checking code
  - Add k bits of redundant data to an n-bit message
- Quality of the error detection code
  - Low redundancy: *k* << *n*
  - High probability of detecting errors
  - Can be implemented efficiently
- Polynomial Code: Cyclic Redundant Check (CRC)
- Sender sends message M to receiver
  - Generate a bit string P: M // E
  - How does sender generate E?
  - How does receiver verifies if error?

### Cyclic Redundant Check: Representing Messages


- Represent *n*-bit string as *n*-1 degree polynomial
  - Bit position as power of each term
  - Digital signal: coefficients are either 0 or 1
  - Bit string: 11011 as  $M(x) = 1 x^4 + 1 x^3 + 0 x^2 + 1 x^1 + 1 x^0 = x^4 + x^3 + x + 1$
- Sender and receiver agrees on a divisor polynomial *C*(*x*)
  - Digital signal: coefficients are either 0 or 1
  - Degree of *C*(*x*): *k*
  - Example:  $C(x) = x^3 + x^2 + 1$  and k = 3

### Cyclic Redundant Check: Algorithms for Sender

- Algorithm generating M//E
  - Left shift *M* by *k* bits
    - Example
      - 11011 becomes 11011000
      - New polynomial:  $T(x) = M(x)x^k$
  - Get remainder of T(x)/C(x)
    - Example:  $(x^4 + x^3 + x + 1)x^3 / (x^3 + x^2 + 1) \rightarrow$ 
      - Result must be 0 or 1: modular 2 arithmetic  $\rightarrow$  "-" = XOR
      - Quotient: *X*<sup>4</sup> + 1
      - Remainder:  $R(x) = x^2 + 1$
  - Subtract R(x) from T(x)
    - Example
      - $(x^4 + x^3 + x + 1)x^3 (x^2 + 1) = x^7 + x^6 + x^4 + x^3 + x^2 + 1$
  - The result is M//E
- Send the result to receiver

## Implementation: Using Shift and XOR

- Message: 11011000
- Divisor: 1101



### Cyclic Redundant Check: Algorithm for Receiver

- Algorithm verifying received message
  - Message represented as polynomial T(x)
  - Calculate remainder of T(x) / C(x)
  - If the remainder is not 0, an error
  - Otherwise, no errors detected (which does not mean there is no errors)

# Cyclic Redundant Check: How Good is It?

- Quality of CRC
  - Algorithm efficiency
    - Shift and XOR
  - Redundancy
    - Depends on C(x)
  - Error detection probability
    - Depends on C(x)
- Common CRC Polynomials
  - CRC-8: 1 0000 0111
  - CRC-10: 110 0011 0011
  - CRC-32: used in Ethernet

### Exercise

• Q1: Sending the following data (two bytes in hexadecimal numbers) over a link

#### 24 A1

determine the "frame" (data // CRC) to be transmit using CRC-8 (divisor =  $x^8+x^2+x+1$ )

- Q2: In above case, show an example of received frame (data // CRC) that contains a detectable error.
- Q3: Show an example of received frame that has non-detectable error.

### Summary

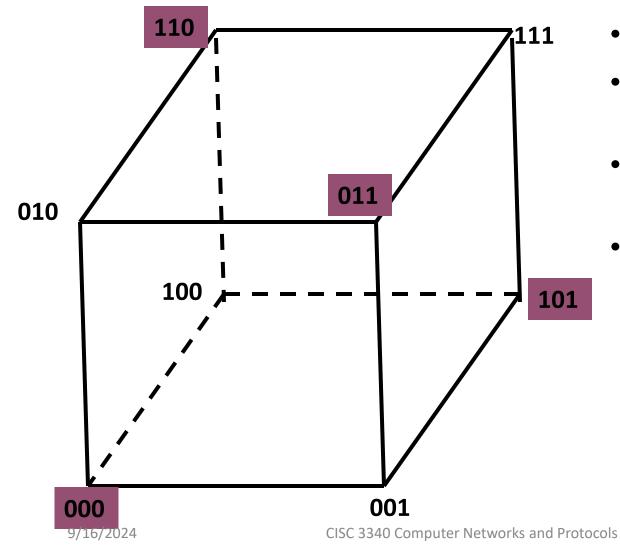
- A frame can be corrupted
  - Error detection
- Error detection not 100% reliable! protocol may miss some errors, but rarely
  - larger EDC field yields better detection and correction
- FYI: error handling in general
- Q: How to make the link appear to be reliable despite errors?
  - Reliable transmission

### Error Handling: Geometrical Perspective

- This discussion is informational
- Q: why can an Error Detection Code (EDC) detect a certain number of bit errors, and why can not the EDC detect some other number of bit errors?
  - Recall discussion on two dimensional parity code
    - 1-bit error, 2-bit error, 3-bit error, 4, 5, 6 ???
    - answered on case-by-case basis
- Q: Is there systematic way to deal with this problem?

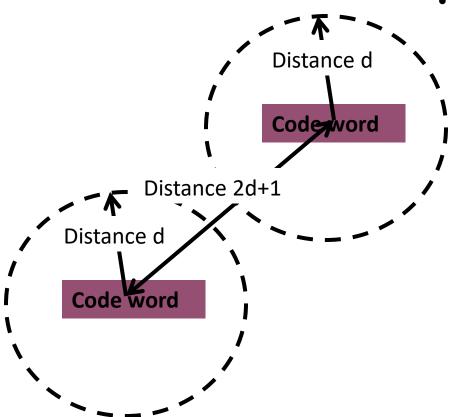
### Error Handling (1)

- Error handling
  - Unit of data sent: code words
  - Original data mapped to sequence of code words
  - Send the code words
  - Receiver recovers original data from the received code words
  - Original message m bits → m + k = n bits message → n bit code word
  - What are the lengths of the error detection codes studied?


### Error Handling (2)

- Hamming distance
  - # of bit positions in which two code words differ
  - h(10001001, 10110001) = 3
- $M \rightarrow M//K: m \rightarrow m + k$ 
  - # of total possible bit strings: 2<sup>(n+k)</sup>
  - k << (m + k)
- Example code words
  - Message size 2: m = 2
  - 1 bit parity bit: k = 1
  - $2^{(m+k)} = 2^3 = 8$
  - Possible code words: 000, 011, 101, 110
    - # = 4
    - Minimum distance of any pair = 2

10001001 10110001

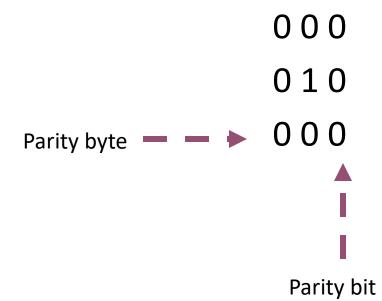

00111000

### Error Handling (3)



- Detect 1 bit errors
  - Cannot detect any 2-bit errors
- Distance of the code is 2
- d+1 distance code words
  - No d bit difference leads to a valid code
  - detect d errors

### Error Handling (4)



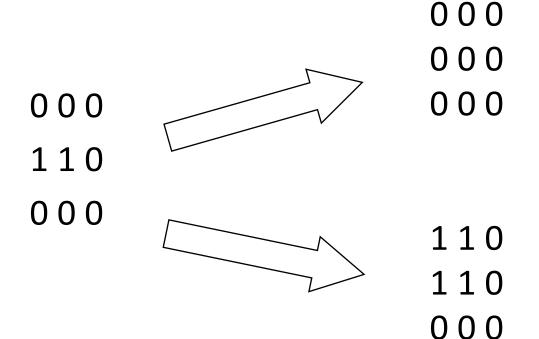

- Correct d errors, need distance
  2d + 1 code words
  - After d errors, the closest code word remains the correct one.
  - Code words 5 = 2x2+1
    - 00000 00000
    - 00000 11111
    - 11111 00000
    - 11111 11111
    - Correct at most 2 errors

### Error Handling (5)

- Observation
  - 2d + 1 distance code  $\rightarrow$  correct d errors
  - 2d + 1 distance code  $\rightarrow$  detect 2d errors
- Error correction codes generally more redundant
- Error correction or error detection?
  - Error detection example: *m* + *k* with error rate *r* 
    - N (m + k) + r N (m + k) with error correction
  - Error correction example: m + K with error rate r and K >> k
    - N (m + K)
  - N (m + k) + r N (m + k) N (m + K) = N k + r N (m + k) NK = N (r + rm + rk) - N K = N (r + rm + rk - K)
  - r + rm + rk − K > 0? r + rm + rk − K < 0?

#### Two-Dimensional Parity Code as Error Correction Code (1)




- Assuming even parity, is there any bit error?
- Assuming 1 bit error, where is the error?

#### Two-Dimensional Parity Code as Error Correction Code (2)

000 110 Parity byte - - 000

- Assuming even parity, is there any bit error?
  - Assuming 2 bit error, where are the errors?

#### Two-Dimensional Parity Code as Error Correction Code (3)



### Two-Dimensional Parity Code as Error Correction Code (4)

- How many bit errors can two-dimensional parity code correct?
  - 1-bit error?
  - 2-bit error?
  - .....
- Flip 1 bit  $\rightarrow$  3 bits are flipped
  - Minimum distance is  $3 = 2 \times 1 + 1$
  - Then?

### Summary

- A frame can be corrupted
  - Error detection and correction
- Error detection not 100% reliable! protocol may miss some errors, but rarely
  - larger EDC field yields better detection and correction
- Q: How to make the link appear to be reliable despite errors?
  - Reliable transmission