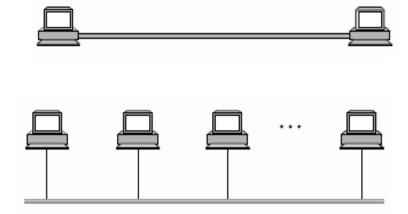
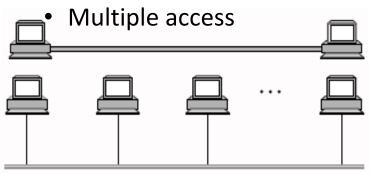
Direct Link Networks: Encoding and Framing

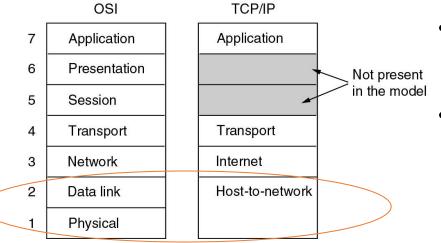

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

Direct Link Networks

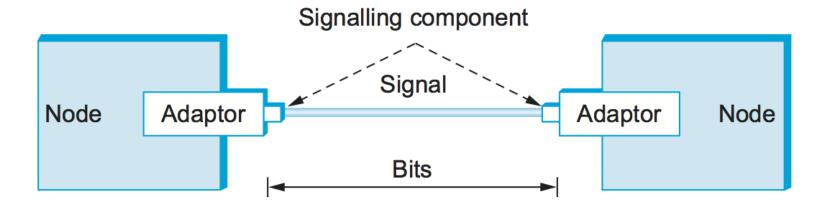

- Types of Networks
 - Point-to-point
 - Multiple access



 What problems do we need to solve to build a direct link network?

Direct Link Networks

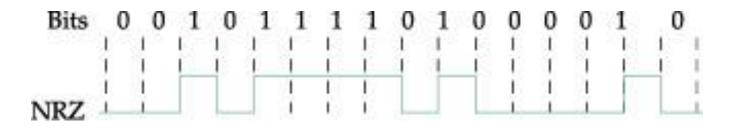
- Types of Networks
 - Point-to-point



- Encoding
 - Encoding bits onto transmission medium
- Framing
 - Delineating sequence of bits into messages
- Error detection
 - Detecting errors and acting on them
- Reliable delivery
 - Making links appear reliable despite errors
- Media access control
 - Mediating access to shared link

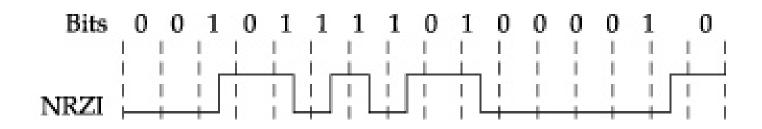
Encoding

- Encoding
 - Encode bits (binary data) into the signals
 - Modulation is not our focus
 - Assume working with two discrete signals: high and low



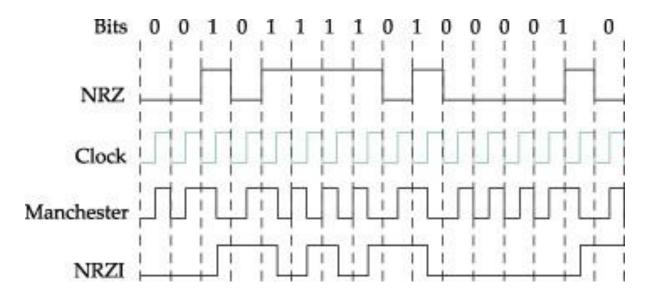
Comparing Encoding Schemes

- Nonreturn-to-zero (NRZ)
- Nonreturn-to-zero-inverted (NRZI)
- Manchester
- 4B/5B


Non-Return-to-Zero (NRZ)

- Method
 - Low \rightarrow 0
 - High $\rightarrow 1$
- Shortcoming
 - Long strings of 1s or 0s
 - Baseline wander
 - Difficult to recover clock

Non-Return-to-Zero-Inverted (NRZI)


- Method
 - Signal transition \rightarrow 1
 - No transition \rightarrow 0
- Solve the problem caused by consecutive 1's
 - But, the problem caused by consecutive 0's remains

Manchester

- Method
 - 0 \rightarrow low-to-high transition

- $1 \rightarrow$ high-to-low transition
- That is, NRZ signal \oplus Clock signal
- Solve the problems caused by both consecutive 1's and 0's
- New problem
 - 50% efficient: Two samples per clock cycle to detect a transition, bit rate is 50% of baud rate (rate of signal changes)

Exercise

- Encode bit sequence 01101
 - using the NRZ, NRZI, Manchester encodings
 - indicating bits and by drawing clock, NRZ, NRZI, and Manchester signals
- (example in the previous slide)

4B/5B

- Motivations
 - To cope with baseline wander
 - To ease clock recovery
 - To increase encoding efficiency (bit rate/baud rate)

4B/5B

• Break long strings of repeated 0's and 1's

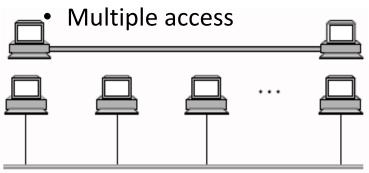
- before transmission: 4 bits \rightarrow 5 bits
 - Every 4 bits of actual data are encoded in a 5-bit code
 - 4 bits data symbols: 2⁴ = 16
 - 5 bits codes: 2⁵ = 32
 - No more than 1 leading 0's in codes and no more than 2 trailing 0's
 - No pair of 5-bit codes results in more than 3 consecutive 0's
 - 11111: line is idle 01101: control symbols
- Transmit codes using NRZI: 80% efficiency

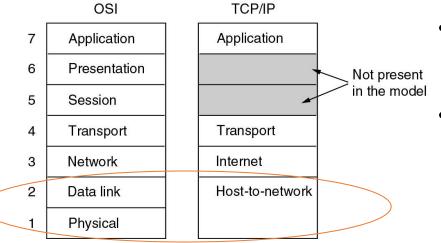
4B/5B Encoding

4-Bit Data Symbol	5-Bit Code	4-Bit Data Symbol	5-Bit Code
0000	11110	1000	10010
0001	01001	1001	10011
0010	10100	1010	10110
0011	10101	1011	10111
0100	01010	1100	11010
0101	01011	1101	11011
0110	01110	1110	11100
0111	01111	1111	11101

Exercise

 Encode bit sequence 01011000 using 4B/5B encoding by showing the conversion between 4-bit sequences of data and their 5-bit sequences of codes and drawing clock and 4B/5B signals


4-Bit Data Symbol	5-Bit Code	4-B	it Data Symbol	5-Bit Code
0000	11110	100	0	10010
0001	01001	100	1	10011
0010	10100	101	0	10110
0011	10101	101	1	10111
0100	01010	110	0	11010
0101	01011	110	1	11011
0110	01110	1110	D	11100
0111	01111	111	1	11101


Summary: Encoding

- Encoding problem
- Solutions
 - NRZ
 - NRZI
 - Manchester
 - 4B/5B
- Advantages/disadvantages?

Direct Link Networks

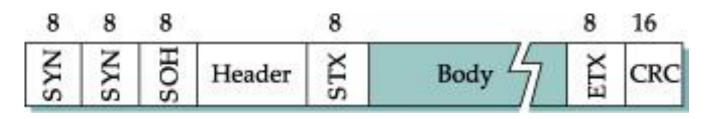
- Types of Networks
 - Point-to-point

- Encoding
 - Encoding bits onto transmission medium
- Framing
 - Delineating sequence of bits into messages
- Error detection
 - Detecting errors and acting on them
- Reliable delivery
 - Making links appear reliable despite errors
- Media access control
 - Mediating access to shared link

Framing

- Packet-switched networks → block of data are exchanged between nodes
 - Breaking bits into frames (packets)
- Key issue: identity where a frame begins and the ends
- Why do we need it?
- To discuss in the context of point-to-point links
 - Byte-oriented framing: frame as a collection of bytes
 - Bit-oriented framing: frame as a collection of bits
 - Clock-based framing (vs. sentinel-based approaches)
- Framing is a fundamental problem that must be addressed in multiaccess networks as well.

Byte-Oriented Framing


- Each frame as a collection of bytes.
- Examples
 - Binary Synchronous Communication (BISYNC) protocol
 - Digital Data Communication Message Protocol (DDCMP)
 - Point-to-Point Protocol (PPP)
 - widely used today

Sentinel vs Length

- Using sentinels
 - Use special characters to indicate where frames start and end.
 - e.g., BISYNC
 - SYN (synchronization), STX (start of text), ETX (end of text)
 - Need "escaping"/character stuffing : special characters might appear in the data portion of the frame (DLE, or data link escape)
- Using a length value
 - include the number of bytes in the frame at the beginning of the frame, i.e., in the frame header.
 - Example: DDCMP
 - A transmission error could corrupt the count field, in which case the end of the frame would not be correctly detected.
 - framing error

BISYNC

- Uses special characters known as *sentinel* characters to indicate whether frames begins and ends
- The beginning of a frame: SYN
- The data portion of the frame is contained between STX and ETX
- The start of header: SOH

BISYNC Character Stuffing

- Problem: ETX may appear in the data
- Solution: escaping
 - ETX \rightarrow DLE ETX
 - \cdot DLE \rightarrow DLE DLE

Point-to-Point Protocol (PPP)

- Commonly used to carry Internet Protocol packets over various sorts of point-to-point links
- Uses sentinels and character stuffing.

8	8	8	16			16	8
Flag	Address	Control	Protocol	Payload	7	Checksum	Flag

Illustrating Frame Format

- A frame is illustrated as a sequence of labeled fields
 - Above each field is a number indicating the length of that field in bits.
 - Note that the packets are transmitted beginning with the leftmost field.
 - Often we can find more detailed explanation of each field

8	8	8	16		16	8
Flag	Address	Control	Protocol	Payload	Checksum	Flag

Illustrating Frame Format: Fields

8	8	8	16			16	8
Flag	Address	Control	Protocol	Payload	7	Checksum	Flag

- The special start-of-text character, denoted as the Flag field is 01111110.
- The Address and Control fields usually contain default values.
- The (Protocol) field is used for demultiplexing; it identifies the high-level protocol, such as IP.
- The frame payload size can be negotiated, but it is 1500 bytes by default.
- The Checksum field is either 2 (by default) or 4 bytes long.
- The PPP frame format is unusual in that several of the field sizes are negotiated rather than fixed.
 - This negotiation is conducted by a protocol called the Link Control Protocol (LCP). PPP and LCP work in tandem
 - LCP sends control messages encapsulated in PPP frames

Exercise

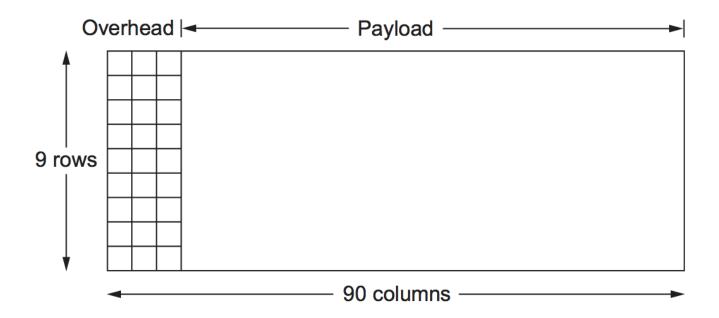
- Use the sentinels in the ASCII table.
 - (Linux manual page) man ascii
- DATA = 1A E2 02 2A 16 10 20. What would be the bytes in the *body* of the frame using BISYNC?
- In the *body* of a frame using BISYNC, is it possible to see the following byte sequence and why?

4A 10 51 6B

Bit-Oriented Framing

- View a frame as a collection of bits
 - The Synchronous Data Link Control (SDLC) protocol
 - High-Level Data Link Control (HDLC) protocol

HDLC



- Beginning and ending sequence: 01111110
- 01111110 may appear in the body of the frame → bit stuffing
 - Sender: any time five consecutive 1s have been transmitted from the body of the, the sender inserts a 0 before transmitting the next bit.
 - 11111 \rightarrow 111110 \rightarrow no 6 1's in a row in the body
 - Receiver: three scenarios
 - Bit stuffed; end of frame marker; error

Clock-based Framing

- Versus sentinel-based approaches
 - Due to bit stuffing or character stuffing, it is in fact not possible to make all frames exactly the same size,
- Clock-based framing
 - Frame can be of fixed length
- Example: framing in SONET
 - Popular in network backbone
 - Has a close tie with telephony systems
 - Specification takes entire book
 - Frame is of fixed length
 - 125 µs for STS-1 (51.84 Mbps)
 - Q: How big is a Mega (sidebar in page 45)
 - 125 µs = ? Bytes
 - Detect the frame header at each interval of frame size

SONET STS-1 Frame

- Each frame is 9 x 90 = 810 bytes long
- The first 2 bytes of the frame contain a special bit pattern
- When the special pattern turns up in the right place enough times, the receiver concludes that it is in sync and can then interpret the frame correctly.

Summary

- Bits/Bytes → frames
 - Framing
- Q: What if the link is not error free? In other words, what if a frame is corrupted?
 - Error detection
 - Reliable transmission