
Virtual Memory and Demand Paging

Hui Chen a

aCUNY Brooklyn College

May 4, 2020

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 1 / 39

Outline

1 Virtual Memory and Demand Paging

2 Page Table and Page Fault

3 Copy-on-Write

4 Page Replacement and Workset

5 Page-Buffering Algorithms

6 Exercise and Experiment

7 Working-set Model and Thrashing

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 2 / 39

Virtual Memory and Demand Paging

Outline

1 Virtual Memory and Demand Paging

2 Page Table and Page Fault

3 Copy-on-Write

4 Page Replacement and Workset

5 Page-Buffering Algorithms

6 Exercise and Experiment

7 Working-set Model and Thrashing

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 3 / 39

Virtual Memory and Demand Paging

Policy vs. Reality

Recall
I Policy. Each process has a separate memory space.

I Protection. Keep each process isolated.
I Sharing. Allow memory to be shared between processes.
I Virtualization. Provide applications with the illusion of “infinite”

memory.
However, we have only limited physical memory ...
I Collectively in a multiprogramming system, the programs exceed

physical memory.
I A single program may become too large to fit in physical memory.

I Mechanism.
I Demand paging.
I ...

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 3 / 39

Virtual Memory and Demand Paging

Demand Paging

Demand paging. Bring a page into memory only when it is needed and
create an illusion of “infinite” memory.

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 4 / 39

Virtual Memory and Demand Paging

Demand Paging

5/4/2020 CUNY | Brooklyn College 11H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 5 / 39

Virtual Memory and Demand Paging

Benefits of Demand Paging

I Less I/O needed, no unnecessary I/O
I Less memory needed
I Faster response
I More users

Why & how?

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 6 / 39

Virtual Memory and Demand Paging

Benefits and Observations

Demand paging gives the OS the ability to execute partially-loaded
program.
I For each run of the program, not the entire program is used for each

run of the program, e.g.,
I Error code, unusual routines, large data structures

I The code and data structures for arun of the program are not needed
at the same time.

I Each program takes less memory while running
I More programs run at the same time (increased degree of

multiprogramming)
I Increased CPU utilization and throughput with no increase in response

time or turnaround time
I Less I/O needed to load or swap programs into memory
I Each user program runs faster

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 7 / 39

Virtual Memory and Demand Paging

Virtual Memory

Program no longer constrained by limits of physical memory by separating
logical memory from physical memory.

Virtual Memory ≡ Logical Memory
Virtual Memory Address ≡ Logical Memory Address

Virtual Memory Address Space ≡ Logical Memory Address Space

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 8 / 39

Page Table and Page Fault

Outline

1 Virtual Memory and Demand Paging

2 Page Table and Page Fault

3 Copy-on-Write

4 Page Replacement and Workset

5 Page-Buffering Algorithms

6 Exercise and Experiment

7 Working-set Model and Thrashing

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 9 / 39

Page Table and Page Fault

Page Fault and Page Table Entry (PTE)

I Add a valid-invalid bit to each page table entry
v. in-memory, or memory resident (Present in physical memory)
i. not-in-memory (Not present in physical memory)

I For pure demand paging, initially valid–invalid bit is set to i on all
entries

I During MMU address translation, if valid–invalid bit in page table
entry is i, a page fault

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 9 / 39

Page Table and Page Fault

Example Page Table

Frame Number Valid-Invalid bit
. . . 1 (v)
. . . 1 (v)
. . . 0 (i)
. . . 0 (i)
. . . 1 (v)
. . . 0 (i)

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 10 / 39

Page Table and Page Fault

Intel IA-32 Page Table

Intel IA-32 uses a 2-level hierarchical paging.
I Intel IA-32’s “Page Directory” Table is the outer table
I Intel IA-32’s “Page Table” is the inner table

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 11 / 39

Page Table and Page Fault

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 12 / 39

Page Table and Page Fault

Intel IA-32 Outer Table Entry (Intel IA-32 PDE)

Frame Number . . . G S 0 A D W U R P
31 – 12 11 – 9 8 7 6 5 4 3 2 1 0

I P. If set, present (same as valid bit in other architectures) in
physical memory.

I R. If set, readable and writable; otherwise, read only
I U. User or supervisor accessible
I W. If set, page write transparent, i.e., external cache write-through; if

0, write-back
I D. If set, page cache disabled (page cannot be cached)
I A. If set, accessed, i.e., page has been accessed (read or written)

recently
I 0.
I S. Page size. 0 for 4KB, 1 for 4MB (huge) page size.
I G. Ignored.

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 13 / 39

Page Table and Page Fault

Intel IA-32 Inner Table Entry (Intel IA-32 PTE)

Frame Number . . . G 0 D A C W U R P
31 – 12 11 – 9 8 7 6 5 4 3 2 1 0

I P. Present (same as valid bit in other architectures)
I R. Writeable or read-only.
I U. User or supervisor accessible
I W. Page write transparent, i.e., external cache write-through
I C. Page cache disabled (page cannot be cached)
I A. Accessed. page has been accessed recently
I D. Dirty. if set, page has been modified recently
I G. Global flag. If set, prevents the TLB from updating the address in

its cache if Control Register CR3 is reset. Note, that the page global
enable bit in Control Register CR4 must be set to enable this feature.

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 14 / 39

Page Table and Page Fault

Handling Page Fault

1. If there is a reference to a page, first reference to that page will trap
to operating system, i.e., a Page fault

2. Operating system looks at the page table to decide:
2.1 if invalid reference, abort
2.2 if just not in memory

3. Find free frame
4. Swap page into frame via scheduled disk operation
5. Reset tables to indicate page now in memory, an set validation bit to v
6. Restart the instruction that caused the page fault

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 15 / 39

Page Table and Page Fault

11/11/2019 CUNY | Brooklyn College 10

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 16 / 39

Page Table and Page Fault

Performance of Demand Paging

Three major activities
I Service the interrupt – careful coding means just several hundred

instructions needed
I Read the page – lots of time
I Restart the process – again just a small amount of time

Page Fault Rate 0 ≤ p ≤ 1
I if p = 0 no page faults
I if p = 1, every reference is a fault

Effective Access Time (EAT) =
(1− p)(memory access)+
p(page fault overhead + swap page out + swap page in)

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 17 / 39

Copy-on-Write

Outline

1 Virtual Memory and Demand Paging

2 Page Table and Page Fault

3 Copy-on-Write

4 Page Replacement and Workset

5 Page-Buffering Algorithms

6 Exercise and Experiment

7 Working-set Model and Thrashing

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 18 / 39

Copy-on-Write

Copy-on-Write

I Copy-on-Write (COW) allows both parent and child processes to
initially share the same pages in memory

I If either process modifies a shared page, only then is the page copied
I COW allows more efficient process creation as only modified pages

are copied
I fork() vs. vfork()

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 18 / 39

Page Replacement and Workset

Outline

1 Virtual Memory and Demand Paging

2 Page Table and Page Fault

3 Copy-on-Write

4 Page Replacement and Workset

5 Page-Buffering Algorithms

6 Exercise and Experiment

7 Working-set Model and Thrashing

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 19 / 39

Page Replacement and Workset

What if there is no more free frame?

I Page replacement – find some page in memory, but not really in use,
page it out

I Algorithm – terminate? swap out? replace the page?
I Performance – want an algorithm which will result in minimum

number of page faults
I Same page may be brought into memory several times

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 19 / 39

Page Replacement and Workset

Page Replacement

I Prevent over-allocation of memory by modifying page-fault service
routine to include page replacement

I Use modify (dirty) bit to reduce overhead of page transfers only
modified pages are written to disk

I Page replacement completes separation between logical memory and
physical memory

I Large virtual memory can be provided on a smaller physical memory

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 20 / 39

Page Replacement and Workset

Basic Algorithm

1. Find the location of the desired page on disk
2. Find a free frame: - If there is a free frame, use it - If there is no

free frame, use a page replacement algorithm to select a victim
frame- Write victim frame to disk if dirty

3. Bring the desired page into the (newly) free frame; update the page
and frame tables

4. Continue the process by restarting the instruction that caused the trap
5. Note now potentially 2 page transfers for page fault – increasing EAT

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 21 / 39

Page Replacement and Workset

Frame Allocation and Replacement

I Frame-allocation algorithm determines how many frames to give each
process

I Page-replacement algorithm which frames to replace
I Want lowest page-fault rate on both first access and re-access

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 22 / 39

Page Replacement and Workset

Evaluting Page Replacement Algorithms

I Evaluate algorithm by running it on a particular string of memory
references (reference string) and computing the number of page faults
on that string

I String is just page numbers, not full addresses
I Repeated access to the same page does not cause a page fault
I Results depend on number of frames available
I In all our examples, the reference string of referenced page numbers is

7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 23 / 39

Page Replacement and Workset

Algorithms

I Optimal Algorithm
I First-In-First-Out (FIFO) Algorithm
I Least Recently Used (LRU) Algorithm
I LRU Approximation Algorithms
I Second-Chance Algorithm
I Enhanced Second-Chance Algorithm
I Counting Algorithm
I Page-Buffering Algorithms

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 24 / 39

Page Replacement and Workset

FIFO Page Replacement

I Straightforward application of Queue
I Select the head of the queue as the victim
I How many page faults are there?

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 25 / 39

Page Replacement and Workset

LRU Page Replacement

I Order pages based on access time
I An access may change the order of the pages

I Select the oldest page (based on access time, i.e., the “least recently
used”) as the victim

I How many page faults are there?

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 26 / 39

Page Replacement and Workset

LRU Page Replacement

I Order pages based on access time
I An access may change the order of the pages

I Select the oldest page (based on access time, i.e., the “least recently
used”) as the victim

I How many page faults are there?

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 27 / 39

Page Replacement and Workset

LRU Implementation

How do we implement LRU?
I Use a counter to save the clock of each access.
I Use a stack of page numbers. Move page referenced to the top of the

stack.
I How many memory accesses for each strategy?

I at each access?
I for selecting a victim?

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 28 / 39

Page Replacement and Workset

LRU Approximation

LRU is slow. Use approximation.
I Second Chance algorithm (also called, the Clock algorithm)
I Enhanced Change algorithm

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 29 / 39

Page Replacement and Workset

Second Chance (Clock) Page Replacement

I Storage page numbers in a “circular” FIFO queue
I Associate each page with a hardware-provided reference bit, initialized

as 0
I When page is referenced, set bit to 1

I Maintain a pointer, initially pointing to the first page referenced (like
a clock hand/arm).

I To select a victim, iterate over pages starting from the one pointed by
the pointer (the clock hand/arm) in the following manner,
1. if the reference bit of the page pointed by the pointer is 0, select it as

victim
2. otherwise, set the page’s reference bit to 0, advance the pointer to next

page
3. go to 1

How many page faults are there?

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 30 / 39

Page Replacement and Workset

Enhanced Second Chance (Clock) Page Replacement

I Still a “Clock” algorithm.
I Introduce a modify bit for each page, initialized it as 0

I Set it to 1 if the process modify the page’s content (i.e., the process
writes to page’s memory)

I Select a victim (iterating over pages starting from the page pointed by
the clock hand) based on the order of preference below (a heuristics)
1. (0, 0) neither recently used not modified – best page to replace
2. (0, 1) not recently used but modified – not quite as good, must write

out before replacement
3. (1, 0) recently used but clean – probably will be used again soon
4. (1, 1) recently used and modified – probably will be used again soon

and need to write out before replacement
How many page faults are there?

R,R,R,R,R,R,R,W,W,R,W,R,W,W,W,R,R,R,R,R,R,R
7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 31 / 39

Page Replacement and Workset

Counting Algorithms

Not common.
I Keep a counter of the number of references that have been made to

each page
I Lease Frequently Used (LFU) Algorithm: replaces page with smallest

count
I Most Frequently Used (MFU) Algorithm: based on the argument that

the page with the smallest count was probably just brought in and
has yet to be used

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 32 / 39

Page-Buffering Algorithms

Outline

1 Virtual Memory and Demand Paging

2 Page Table and Page Fault

3 Copy-on-Write

4 Page Replacement and Workset

5 Page-Buffering Algorithms

6 Exercise and Experiment

7 Working-set Model and Thrashing

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 33 / 39

Page-Buffering Algorithms

Page-Buffering Algorithms

I Always keep a pool of free frames
I Also keep a pool of modified pages

I When backing store otherwise idle, write pages there and set to
non-dirty

I Possibly, keep free frame contents intact and note what is in them
I If referenced again before reused, no need to load contents again from

disk
I Generally useful to reduce penalty if wrong victim frame selected

I Minor vs. major page faults
I Shared library?
I Free frame (buffered), but not yet zeroed-out and allocated to other

processes

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 33 / 39

Exercise and Experiment

Outline

1 Virtual Memory and Demand Paging

2 Page Table and Page Fault

3 Copy-on-Write

4 Page Replacement and Workset

5 Page-Buffering Algorithms

6 Exercise and Experiment

7 Working-set Model and Thrashing

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 34 / 39

Exercise and Experiment

Paging and Program Structure

Exercise 10.7. Consider the two-dimensional array A:
int A[][] = new int[100][100];

where A[0][0] is at location 200 in a paged memory system with pages of
size 200. A small process that manipulates the matrix resides in page 0
(locations 0 to 199). Thus, every instruction fetch will be from page 0. For
three page frames, how many page faults are generated by the following
array-initialization loops? Use LRU replacement, and assume that page
frame 1 contains the process and the other two are initially empty
I Program (a)

1 for (int j = 0; j < 100; j++)
2 for (int i = 0; i < 100; i++)
3 A[i][j] = 0;

I Program (b)
1 for (int i = 0; i < 100; i++)
2 for (int j = 0; j < 100; j++)
3 A[i][j] = 0;

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 34 / 39

Exercise and Experiment

Experiment

Let’s conduct an experiment illustrating the above exercise ...
I OSClassExamples/memory/linux/paging/arrayfiller

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 35 / 39

Working-set Model and Thrashing

Outline

1 Virtual Memory and Demand Paging

2 Page Table and Page Fault

3 Copy-on-Write

4 Page Replacement and Workset

5 Page-Buffering Algorithms

6 Exercise and Experiment

7 Working-set Model and Thrashing

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 36 / 39

Working-set Model and Thrashing

Thrashing

A process is thrashing if the process experiences high paging activity, as
the result, the process is spending more time paging than executing.
1. Paging activity increases, CPU utilization decreases.
2. When CPU scheduler sees low CPU utilization, schedule more

processes to run to utilize the idle CPU.
3. Paging activity becomes even higher, CPU utilization becomes even

lower.
4. CPU scheduler schedule even more processes to run.
5. Go to 3

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 36 / 39

Working-set Model and Thrashing

Locality Model

I As a process executes, it moves from locality to locality.
I A locality is a set of pages that are actively used together.
I A running program is generally composed of several different

localities, which may overlap.

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 37 / 39

Working-set Model and Thrashing

Working-set Model

Based on the assumption of locality, define the set of pages in the most
recent ∆ page references as a working set where we call ∆ the working-set
window.
I Let ∆ be 10, what is the working set at time immediately after the

10th page reference (counting from 1) and what immediately after
page reference 26?
2 6 1 5 7 7 7 7 5 1 6 2 3 4 1 2 3 4 4 4 3 4 3 4 4 4 1 3 2 3 4 4 4 3 4 4 4 ...

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 38 / 39

Working-set Model and Thrashing

Frame Allocation and Working-set Model

We ought to select ∆ and allocate frames such that

D(t) =
N∑
i

|Wi(∆, t)| ≤ m(t) (1)

where
I N is the number of processes,
I |Wi(∆, t)| is the size of the working set of process i,
I D(t) is the total demand for frames, i.e., the sum of the sizes of all

working sets of all processes at time t, and
I m(m) is the number of available frames at time t.

H. Chen (CUNY) CISC 3320-MW3 May 4, 2020 39 / 39

	Virtual Memory and Demand Paging
	Page Table and Page Fault
	Copy-on-Write
	Page Replacement and Workset
	Page-Buffering Algorithms
	Exercise and Experiment
	Working-set Model and Thrashing

