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CPU Scheduling

Recall Process Queues and State Transitions
3.2 Process Scheduling 113
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Figure 3.5 Queueing-diagram representation of process scheduling.

• The process could issue an I/O request and then be placed in an I/O wait
queue.

• The process could create a new child process and then be placed in a wait
queue while it awaits the child’s termination.

• The process could be removed forcibly from the core, as a result of an
interrupt or having its time slice expire, and be put back in the readyqueue.

In the first two cases, the process eventually switches from thewaiting state
to the ready state and is then put back in the ready queue. Aprocess continues
this cycle until it terminates, at which time it is removed from all queues and
has its PCB and resources deallocated.

3.2.2 CPU Scheduling

Aprocess migrates among the ready queue and various wait queues through-
out its lifetime. The role of the CPU scheduler is to select from among the
processes that are in the ready queue and allocate a CPU core to one of them. The
CPU scheduler must select a new process for the CPU frequently. An I/O-bound
process may execute for only a few milliseconds before waiting for an I/O
request.Although a CPU-bound processwill require a CPU core for longer dura-
tions, the scheduler is unlikely to grant the core to a process for an extended
period. Instead, it is likely designed to forcibly remove the CPU from a process
and schedule another process to run. Therefore, the CPU scheduler executes at
least once every 100 milliseconds, although typically much more frequently.

Some operating systems have an intermediate form of scheduling, known
as swapping, whose key idea is that sometimes it can be advantageous to
remove a process from memory (and from active contention for the CPU)
and thus reduce the degree of multiprogramming. Later, the process can be
reintroduced into memory, and its execution can be continued where it left off.
This scheme is known as swapping because a process can be “swapped out”

3.1 Process Concept 109
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Figure 3.2 Diagram of process state.

• Terminated. The process has finished execution.

These names are arbitrary, and they vary across operating systems. The states
that they represent are found on all systems, however. Certain operating sys-
tems also more finely delineate process states. It is important to realize that
only one process can be running on any processor core at any instant. Many
processesmay be ready andwaiting, however. The state diagram corresponding
to these states is presented in Figure 3.2.

3.1.3 Process Control Block

Each process is represented in the operating system by a process control
block (PCB)—also called a task control block. A PCB is shown in Figure 3.3.
It contains many pieces of information associated with a specific process,
including these:

• Process state. The state may be new, ready, running, waiting, halted, and
so on.

• Program counter. The counter indicates the address of the next instruction
to be executed for this process.

process state

process number

program counter

memory limits

list of open files

registers

• • •

Figure 3.3 Process control block (PCB).

Figure: Process queues and transitions1.

I CPU scheduling is the basis of multiprogrammed operating systems, it
is about selecting a task from the Ready queue to execute it on CPU.
I Process scheduling vs. thread scheduling

1Silberschatz, Galvin, and Gagne, Operating system concepts.
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When does scheduling happens?
3.2 Process Scheduling 113
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Figure 3.5 Queueing-diagram representation of process scheduling.
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queue.
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this cycle until it terminates, at which time it is removed from all queues and
has its PCB and resources deallocated.

3.2.2 CPU Scheduling
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out its lifetime. The role of the CPU scheduler is to select from among the
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request.Although a CPU-bound processwill require a CPU core for longer dura-
tions, the scheduler is unlikely to grant the core to a process for an extended
period. Instead, it is likely designed to forcibly remove the CPU from a process
and schedule another process to run. Therefore, the CPU scheduler executes at
least once every 100 milliseconds, although typically much more frequently.

Some operating systems have an intermediate form of scheduling, known
as swapping, whose key idea is that sometimes it can be advantageous to
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• Terminated. The process has finished execution.

These names are arbitrary, and they vary across operating systems. The states
that they represent are found on all systems, however. Certain operating sys-
tems also more finely delineate process states. It is important to realize that
only one process can be running on any processor core at any instant. Many
processesmay be ready andwaiting, however. The state diagram corresponding
to these states is presented in Figure 3.2.

3.1.3 Process Control Block

Each process is represented in the operating system by a process control
block (PCB)—also called a task control block. A PCB is shown in Figure 3.3.
It contains many pieces of information associated with a specific process,
including these:

• Process state. The state may be new, ready, running, waiting, halted, and
so on.

• Program counter. The counter indicates the address of the next instruction
to be executed for this process.
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Figure 3.3 Process control block (PCB).

Figure: Process queues and transitions2.

I CPU scheduling is about selecting a task from the Ready queue to
execute it on CPU, but when does the OS make such an action?

2Silberschatz, Galvin, and Gagne, Operating system concepts.
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Preemptive vs. Non-preemptive Scheduling
3.2 Process Scheduling 113
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Figure 3.5 Queueing-diagram representation of process scheduling.
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These names are arbitrary, and they vary across operating systems. The states
that they represent are found on all systems, however. Certain operating sys-
tems also more finely delineate process states. It is important to realize that
only one process can be running on any processor core at any instant. Many
processesmay be ready andwaiting, however. The state diagram corresponding
to these states is presented in Figure 3.2.

3.1.3 Process Control Block

Each process is represented in the operating system by a process control
block (PCB)—also called a task control block. A PCB is shown in Figure 3.3.
It contains many pieces of information associated with a specific process,
including these:

• Process state. The state may be new, ready, running, waiting, halted, and
so on.

• Program counter. The counter indicates the address of the next instruction
to be executed for this process.
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Figure 3.3 Process control block (PCB).

Figure: Process queues and transitions3.

Consider when a task goes into the Ready queue, or a task is off CPU,

1. Running → Waiting

2. Running → Ready

4. Waiting → Ready

5. * → Terminated

3Silberschatz, Galvin, and Gagne, Operating system concepts.
H. Chen (CUNY) CISC 3320-MW3 March 9, 2020 5 / 21



CPU Scheduling

Preemptive vs. Non-preemptive Scheduling
3.2 Process Scheduling 113

ready queue CPU

I/O I/O wait queue I/O request

time slice
expired

create child
process

child 
termination
wait queue

wait for an
interrupt

interrupt 
wait queue

interrupt
occurs

child
terminates

Figure 3.5 Queueing-diagram representation of process scheduling.
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only one process can be running on any processor core at any instant. Many
processesmay be ready andwaiting, however. The state diagram corresponding
to these states is presented in Figure 3.2.

3.1.3 Process Control Block

Each process is represented in the operating system by a process control
block (PCB)—also called a task control block. A PCB is shown in Figure 3.3.
It contains many pieces of information associated with a specific process,
including these:

• Process state. The state may be new, ready, running, waiting, halted, and
so on.

• Program counter. The counter indicates the address of the next instruction
to be executed for this process.
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Figure 3.3 Process control block (PCB).

Figure: Process queues and transitions3.

Under 1 and 4, nonpreemptive or cooperative; otherwise, preemptive.

1. Running → Waiting

2. Running → Ready

4. Waiting → Ready

5. * → Terminated

3Silberschatz, Galvin, and Gagne, Operating system concepts.
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Scheduling and Context Switch

1. CPU scheduler makes the decision and select a task from the Ready
queue.

2. Dispatcher gives the control of the CPU to the selected task.
2.1 Switching context from the active task to the selected CPU.
2.2 Switching to user mode
2.3 Jumping to the proper location in the selected task to resume that task

H. Chen (CUNY) CISC 3320-MW3 March 9, 2020 6 / 21



CPU Scheduling

Monitoring System Context Switching in Linux

1 ~$ vmstat 1 3 # show vm s t a t i s t i c s e v e r y 1 second f o r 3 t imes
2 p r o c s −−−−−−−−−−−memory−−−−−−−−−− −−−swap−− −−−−−i o−−−− −system−− −−−−−−cpu−−−−−
3 r b swpd f r e e b u f f cache s i so b i bo i n c s us sy i d wa s t
4 0 0 1340 123188 112552 716608 0 0 0 2 4 10 0 0 100 0 0
5 0 0 1340 123188 112552 716640 0 0 0 0 576 74 0 0 100 0 0
6 0 0 1340 123188 112552 716640 0 0 0 0 576 68 0 0 100 0 0
7 ~$

I man vmstat

system
cs: The number of context switches per second.
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Monitoring Process Context Switch in Linux

1 ~$ ~$ f o r p i n / proc /[0 −9]∗ ; do \
2 > echo " P r o c e s s ${p#/proc /} : " ; \
3 > w h i l e read l n ; do \
4 > echo −e "\ t$ { l n }" ; done <<< $ ( grep −E −o " ^.∗ _ ct x t _s w i t ch e s .∗ $" ${p}/ s t a t u s ) ; \
5 > done ;
6 P r o c e s s 1 :
7 v o l u n t a r y _ c t x t _ s w i t c h e s : 41215
8 n o n v o l u n t a r y _ c t x t _ s w i t c h e s : 15741
9 P r o c e s s 10 :

10 v o l u n t a r y _ c t x t _ s w i t c h e s : 26239510
11 n o n v o l u n t a r y _ c t x t _ s w i t c h e s : 10
12 . . .
13 P r o c e s s 99 :
14 v o l u n t a r y _ c t x t _ s w i t c h e s : 4
15 n o n v o l u n t a r y _ c t x t _ s w i t c h e s : 0
16 ~$

I A voluntary context switch occurs when a task has given up control
of the CPU because it requires a resource that is currently unavailable
(such as blocking for I/O.)

I A nonvoluntary context switch occurs when the CPU has been taken
away from a task, such as when its time slice has expired or it has
been preempted by an another task.
H. Chen (CUNY) CISC 3320-MW3 March 9, 2020 8 / 21
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Scheduling Criteria

Not all processes are created equal

The design or selection of CPU scheduling algorithm depends on an
observed property of processes:
I CPU burst and I/O burst cycle
I Distribution of CPU and I/O bursts
I CPU-bound processes
I I/O-bound processes
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Scheduling Criteria

Scheduling Criteria

Criteria from design or selection of CPU scheduling algorithm
I CPU utilization. % of time CPU being busy
I Throughput. # of tasks completed per time unit.
I Turnaround time. Interval from task submission to task completion.
I Waiting time. Total time a task spends (i.e., waits) in the ready

queue.
I Response time. Interval from the submission of a request until the

first response is produced.

H. Chen (CUNY) CISC 3320-MW3 March 9, 2020 10 / 21



Scheduling Criteria

Optimizing for Scheduling Criteria

Maximize CPU utilization and throughput and to minimize turnaround
time, waiting time, and response time.
I Consider min, max, average, variance ...
I Criteria may conflict with each other
I Batch systems vs. interacctive systems vs. real-time systems vs. ...

H. Chen (CUNY) CISC 3320-MW3 March 9, 2020 11 / 21
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Scheduling Algorithms

Scheduling Algorithms

I First-Come, First-Served Scheduling
I Shortest-Job-First Scheduling

I Shortest-Remaining-Time-First Scheduling
I Round-Robin Scheduling
I Priority Scheduling

I Multilevel Queue Scheduling
I Multilevel Feedback Queue Scheduling
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Scheduling Algorithms

First-Come, First-Served Scheduling (FCFS)

Consider the ready queue with the following tasks,

Task Burst Time
P1 6
P2 8
P3 7
P4 3
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Scheduling Algorithms

Shortest-Job-First Scheduling (SJF)

Consider the ready queue with the following tasks,

Task Burst Time
P1 6
P2 8
P3 7
P4 3
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Scheduling Algorithms

Shortest-Remaining-Time-First Scheduling (SRTF)

Consider the following tasks that arrive in the ready queue,

Task Arrival Time Burst Time
P1 0 6
P2 1 8
P3 2 7
P4 3 3
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Scheduling Algorithms

Estimating CPU Burst Time

I Do we know the CPU burst times at the time when we invoke the
CPU scheduling algorithm?

H. Chen (CUNY) CISC 3320-MW3 March 9, 2020 16 / 21



Scheduling Algorithms

Estimating CPU Burst Time

I Do we know the CPU burst times at the time when we invoke the
CPU scheduling algorithm?

I How do we predict CPU burst times?

H. Chen (CUNY) CISC 3320-MW3 March 9, 2020 16 / 21



Scheduling Algorithms

Estimating CPU Burst Time

I Do we know the CPU burst times at the time when we invoke the
CPU scheduling algorithm?

I How do we predict CPU burst times?
The next CPU burst is generally predicted as an exponential average
of the measured lengths of previous CPU bursts, commonly,

τn+1 = αtn + (1− α)τn (1)

where
tn: the n-th CPU burst that the OS records
τn+1: the next (i.e., n+1) predicted value of the CPU burst
α: α ∈ [0, 1], an aging exponent that determines the effect of

history of CPU bursts.

H. Chen (CUNY) CISC 3320-MW3 March 9, 2020 16 / 21



Scheduling Algorithms

Round-Robin Scheduling (RR)

Assume time quantum = 2 and consider the ready queue with the
following tasks,

Task Burst Time
P1 6
P2 8
P3 7
P4 3
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Scheduling Algorithms

Priority Scheduling

Consider the ready queue with the following tasks where 1 means the
highest priority, and 3 lowest,

Task Burst Time Priority
P1 6 3
P2 8 1
P3 7 2
P4 3 1
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Thread Scheduling and Multiprocessor Scheduling

Thread Scheduling

I Kernel and user threads
I Contention scope
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Multiprocessor Scheduling

I Multiprocess architecture, multicore CPUs vs. multithreaded cores vs.
NUMA systems vs. Heterogeneous multiprocessing

I Common ready queue vs. per-core ready queue
I Load balancing
I Processor affinity and cache
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