CISC 3320 MW3
I/O Hardware

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College

Acknowledgement

* These slides are a revision of the slides
provided by the authors of the textbook
via the publisher of the textbook

Outline

« I/O Device/Hardware
* Role of Device Driver
« Accessing I/O Devices
« I/O Schemes

Overview of I/O Management

« [/O management is a major component of operating
system design and operation

« Important aspect of computer operation
« I/O devices vary greatly
« Various methods to control them

« Performance management
« New types of devices frequent

« Ports, busses, device controllers connect to various
devices

« Device drivers encapsulate device details

« Present uniform device-access interface to I/O subsystem

I/O Hardware

- A few general categories
« Storage devices
« Examples: Disks, tapes, solid state drives

« Transmission devices

« Examples: network adapters, modems
- Human-interface devices
« Examples: display screens, keyboard, mouse, touch screen
« Specialized devices

« Examples: I/O devices that control cars, robots,
aircrafts, spacecrafts

Common Concepts

« Signals from I/O devices interface with
computer via:

e Port
 Bus

 Device controller

Port

« Port: connection point for device

« Devices communicate with a computer via
this connection point

* (Physical) port
« Examples: USB port, serial port, parallel port

 (Logical) port

Bus

« Daisy chain or shared direct access

« A common set of wires with a protocol that
specifies commands that can be transmitted

« Examples:

« PCI bus common in PCs and servers, PCI Express
(PCle)

« Expansion bus connects relatively slow devices

Device Controller

« Devices

« Example: hard disk drives have motors, magnetic
headers, and disks

« Controller, also called host adapter

« A collection of electronics that operate a port, a
bus, or a device (some contain small embedded
computer)

« Accept and act on commands from the OS

« Present a simpler interface to the OS

« Examples: SATA controller

Variety of Controllers

« Sometimes integrated

« Sometimes separate circuit board (host
adapter)

« Contains processor, microcode, private
memory, bus controller, etc

« Some talk to per-device controller with
bus controller, microcode, memory, etc

A Typical PC Bus Structure

2000

monitor processor
cache
cgorﬁfrgilfesr bricl%i/tr::)eﬁgw:)ry — memory SCSI controller
| PCI bus)
IDE disk controller expansion bus keyboard
interface

@ @ { expansion bus)
@ @ parallel serial
port port

CUNY | Brooklyn College: CISC 3320
0S

1/29/2020

Questions?

 Variety of devices

« Port, bus, and device controller

Needing Device Driver

« Each type of controller is different

A piece of software called device driver
communicates to the controller, and the
OS

 Adhere to some standard when
communicating to the OS

Device, Driver, and OS

 Reduce complexity, increase uniformity
and reliability

1/29/2020

OS Kernel

Device Driver Device Driver

SATA
Controller

USB Controller

CUNY | Brooklyn College: CISC 3320

0S 14

Questions?

« Role and benefit of having device
drivers?

I/0O Instructions

« I/O instructions control devices via
device controllers

» Device controller usually have registers
where device driver places commands,
addresses, and data to write, or read
data from registers after command
execution

Controller Registers

« Typically have 4 registers or more
« Typically 1-4 bytes
« Data-in register
« Read by the host
- Data-out register
« Written by the host
« Status register

« A number of bits indicating the status of the device (e.g., busy,
error)

« Control register

« A number of bits indicating the mode of the device

Controller Data Buffer

 May have a data buffer, e.g., FIFO buffer

« Examples: video adapter (video memory)

VM VirtualBox: Allocating
Device Buffer

o

{3 Debian32bit - Settings

@ General Display
IE Spstern SCreen | Remate Display Yideo Capture //\
{
Display Yideo Mermary: 16 ME |5
0 ME 125 —
Storage _
Monitor Counk: 1
Di Audia 1 5
Scale Fackar: I_J 0% =
g‘ Metwork
100%% 200
@ Serial Ports Acceleration: Enable 30 Acceleration
Enable 20 Wideo Acceleration
ﬁ UsE
|:j Shared Folders
E User Interface
(04] [Zancel]

1/29/2020

CUNY | Brooklyn College: CISC 3320
0S

19

Device Addresses

« Devices have addresses (logical port),
used by

 Direct I/O instructions

« Memory-mapped I/0

« Device data and command registers mapped to
processor address space

« Especially for large address spaces (graphics)

Device Address (I/O Port
Space)

- Each register is assigned an address,
sometimes called an I/O port number
« Typically, a 8-bit or 16-bit integer

« All I/O port numbers form the I/O port address
space

« A CPU has I/0O instructions

« Example instruction (in an assembly language):

« IN REG, PORT
« OUT PORT, REG

Device I/O Port Locations on

PCs (partial)

|/O address range (hexadecimal) device
000-00F DMA controller
020-021 interrupt controller
040-043 timer
200-20F game controller
2F8-2FF serial port (secondary)
320-32F hard-disk controller
378-37F parallel port
3D0-3DF graphics controller
3F0-3F7 diskette-drive controller
3F8-3FF serial port (primary)

1/29/2020

CUNY | Brooklyn College:
0S

CISC 3320

22

Access Device Controller

« CPU read and write to the device
controller registers and data buffer

* (Logical) I/O ports
« Memory mapped I/0

Memory Mapped I/0O

- Map all the control registers into the
memory address space

* A register is assigned to a unique memory
address to which no memory is assigned

« Accessing these registers as if they were
main memory

* Hybrid scheme
« Data buffers are mapped to memory address
» Control registers have dedicated I/O ports

Accessing Device Controllers

Two address

OxFFFF...

I/0 Ports

Memory

I/O ports

/

(a)

One address space

Two address spaces

(b) (c)

Memory-Mapped Hybrid

* Access controller registers [Figure 5-2 in

Tanenbaum & Bos, 2014]

Strength and Weakness

« Strength of memory mapped I/0
« Easier to program
« Easier to protect
» Faster to access

 Weakness (two addresses logically
identical, but physically different)

 More complex to design cache
 More complex to design bus

Questions?

« Access devices controller registers
« I/O ports
« Memory-mapped I/0
« Hybrid

I/O Schemes

» Busy waiting (polling)
« while (busy) wait; do I/0O;
 Interrupted I/0

« do something else; when (interrupted) do
I/0;

* Direct memory access (DMA)

* initialize DMA; do something else; notified
I/O completion or failure when interrupted;

Busy-Waiting (or Polling)

Illustrate it with writing a byte

 Host

1. do

2. read the busy-bit in the device status register

3. while (busy)

4. set the write-bit in the control register

5. write a byte into the data-out register

6. set the command-ready bit in the control register
 Device Controller

1. do

2. read the command-ready bit

3. while (not set)

4. set the busy bit

5. read the byte in the data-out register

6. write the byte to the device

7. if (success) clear the command-ready bit and the busy bit

8. else set the error bit

1/29/2020 CUNY | Brooklyn College: CISC 3320 29

0S

Busy Waiting Occupies CPU

 Host:

1. do
2. [1] read the busy-bit in the device status register
3 [3] while ([2] busy)

. Steps 1 - 3 are a busy-wait cycle to wait for
I/O from device via polling the device
controller

» Polling can happen in 3 instruction cycles

« Read status, logical-and to extract status bit,
branch if not zero

Busy-Waiting: Discussion

 Host:

1. do

2. read the busy-bit in the device status register
3. while (busy)

4

. Sté|55 1 - 3 are a busy-wait cycle to wait for I/O
from device

Reasonable if device is fast (e.g., 1 or 2 cycles).

But inefficient if device slow (e.g., many cycles).
CPU switches to other tasks?

But if miss a cycle data overwritten / lost.

Interrupt-Driven I/0

 Host:

1. do
2. [1] read the busy-bit in the device status register

3. [3] while ([2] busy)
4

« Polling can happen in 3 instruction cycles

« Read status, logical-and to extract status bit, branch if
not zero

« How to be more efficient?

« Design with interrupts
» Design I/O device to trigger CPU Interrupt-request line, and

 Program accordingly

Interrupt-Driven I/O Cycle

CPU

1/29/2020

Initiates 1/0 via the
device driver Device Controller

Execute instructions
(for other tasks) and
check interrupts after Initiates /O
each instruction

Does I/0 (e.g., spin
Saves CPU state disk)

Runs interrupt handler
to process I/0O

|/O ready or error; raise
interrupt-request line

Restores CPU state

Rhesume processing o

Al NelNals S K

CUNY | Brooklyn College: CISC 3320

0S 33

Processing I/O: What if Many
Bytes to Read?

 CPU B e Device Controller

device driver

Initiates 1/0
Execute instructions

{{e]g o'Fher tasks) and Does I/O (e.g., spin
check interrupts after disk)
each instruction

Saves CPU state

|/O ready or error; raise
interrupt-request line

Runs interrupt handler
to process |/O

Restores CPU state for (|nt |=O, |<NUM_BYTES, i++) {
i el // read byte i

Rhesume processing o

CUNY | Brooklyn College: CISC 3320

1/29/2020 0S

34

Direct Memory Access

» Used to avoid programmed I/O (one byte
at a time) for large data movement

* Requires DMA controller

« Bypasses CPU to transfer data directly
between I/O device and memory

e VVersion that is aware of virtual addresses
can be even more efficient

* Direct Virtual Memory Access (DVMA)

Six Step Process to Perform
DMA Transfer

« OS writes DMA command block into memory
« Source and destination addresses
Read or write mode

Count of bytes

Writes location of command block to DMA
controller

Bus mastering of DMA controller
« grabs bus from CPU
« Cycle stealing from CPU but still much more efficient

When done, interrupts to signal completion

1. device driver is told
to transfer disk data CPU
to buffer at address X
5. DMA controller 2. device driver tells
transfers bytes to disk controller to
buffer X, increasing transfer C bytes
memory address from disk to buffer T
and decreasing C at address X
untifC =0
6. when C = 0, DMA Dl Sy

interrupts CPU to signal
transfer completion

interrupt | CPU memory bus —

controller

memory

X

buffer

PCI bus

IDE disk
controller

3. disk controller initiates
DMA transfer

4. disk controller sends

s o5
) sy

1/29/2020

each byte to DMA
controller

CUNY | Brooklyn College: CISC 3320

0S

37

Questions?

 I/O instructions
« I/O schemes
» Busy-waiting (polling)
» Interrupt-driven (interrupted) I/0

* Direct memory access

