CISC 3320
C30c Role-based and

Mandatory Access Control
and Others

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College



Acknowledgement

* These slides are a revision of the slides
provided by the authors of the textbook via
the publisher of the textbook



Outline

* Role-based Access Control

* Mandatory Access Control (MAC)

* Capability-Based Systems

* Other Protection Implementation Methods

* Language-based Protection



Role-based Access Control

* Protection can be applied to non-file resources

* Oracle Solaris 10 provides role-based access
control (RBAC) to implement least privilege

* Privilege is right o execute system call or use an
option within a system call

« Can be assighed to processes

 Users assigned roles granting access to privileges and
programs

 Enable role via password to gain its privileges

« Similar to access matrix



user 1

role 1

privileges 1

privileges 2

executes with role 1 privileges

l

4/18/2019 CUNY | Brooklyn College



Discretionary Access Control
(DAC)

» Individual user sets access control mechanism
to allow or deny access to an object

 Operating systems traditionally had discretionary
access control (DAC) to limit access to files and
other objects

* e.g., UNIX file permissions and Windows access
control lists (ACLs)

* Discretionary is a weakness

 Because users / admins need to do something to
Increase protection



Mandatory Access Control
(MAC)

 System mechanism controls access to object, and
individual cannot alter that access

« Sometimes called rule-based access control

 Stronger form is mandatory access control, which
even root user can't circumvent

« Makes resources inaccessible except to their intended
owners

* Modern systems implement both MAC and DAC

* Usually MAC acts as a more secure, optional configuration

* e.g., Trusted Solaris, TrustedBSD (used in macOS),
SELinux, Windows MAC



MAC and Labels

* At its heart, labels assigned to objects and
subjects (including processes)

* When a subject requests access to an
object, policy checked to determine whether
or not a given label-holding subject is
allowed to perform the action on the object



Capability-Based Systems

« Hydra and CAP were first capability-based systems

* Now included in Linux, Android and others, based on POSIX.le (that never became a
standard)

« Essentially slices up root powers into distinct areas, each represented by a bitmap
bit

* Fine grain control over privileged operations can be achieved by setting or masking
the bitmap

* Three sets of bitmaps - permitted, effective, and inheritable
* Can apply per process or per thread
* Once revoked, cannot be reacquired

* Process or thread starts with all privs, voluntarily decreases set during
execution

+ Essentially a direct implementation of the principle of least privilege

« An improvement over root having all privileges but inflexible (adding new privilege
difficult, etc)



Capabilities in POSIX.1le

In the old model, even a simple Capabilities can be thought of as "slicing up
ping utility would have required the powers of root" so that individual

root privileges, because it opens a applications can "cut and choose" only

raw (ICMP) network socket those privileges they actually require

With capabilities, ping can run as a
normal user, with CAP_NET_RAW
set, allowing it to use ICMP but not
other extra privileges

CAP_CHOWN

CAP_NET_RAW

Chart Area

4/18/2019 CUNY | Brooklyn College

10



Other Protection Improvement
Methods

« System integrity protection (SIP)
» System-call filtering

» Sandboxing

» Code signing

 Language-Based Protection



System Integrity Protection

(SIP)
* Introduced by Apple in macOS 10.11

* Restricts access to system files and
resources, even by root

» Uses extended file attribs to mark a binary
to restrict changes, disable debugging and
scrutinizing

* Also, only code-signed kernel extensions
allowed and configurably only code-signed

apps



System-Call Filtering

* Like a firewall, for system calls

* Can also be deeper -inspecting all system call
arguments

* Linux implements via SECCOMP-BPF
(Berkeley packet filtering)



Sandboxing

* Running process in limited environment

« Impose set of irremovable restrictions early in startup of
process (before main())

* Process then unable to access any resources beyond its
allowed set

« Java and .net implement at a virtual machine level
« Other systems use MAC to implement

« Apple was an early adopter, from macOS 10.5's "seatbelt”
feature

« Dynamic profiles written in the Scheme language, managing system
calls even at the argument level

« Apple now does SIP, a system-wide platform profile



Code Signing

» Code signing allows a system to trust a
program or script by using crypto hash to
have the developer sign the executable

* So code as it was compiled by the author

* If the code is changed, signature invalid and
(some) systems disable execution

* Can also be used to disable old programs by the
operating system vendor (such as Apple)
cosigning apps, and then invaliding those
signatures so the code will no longer run



Language-based Protection

» Specification of protection in a programming
language allows the high-level description of policies
for the allocation and use of resources

» Language implementation can provide software for
protection enforcement when automatic hardware-
supported checking is unavailable

« Interpret protection specifications to generate
calls on whatever protection system is provided by
the hardware and the operating system

» Example

 Java



Protection in Java 2

* Protection is handled by the Java Virtual Machine (JVM)

* A class is assigned a protection domain when it is loaded
by the JVM

 The protection domain indicates what operations the
class can (and cannot) perform

 If alibrary method is invoked that performs a privileged
operation, the stack is inspected to ensure the operation
can be performed by the library

* Generally, Java's load-time and run-time checks enforce
type safety

* Classes effectively encapsulate and protect data and
methods from other classes



Questions?

* Role-based Access Control

* Mandatory Access Control (MAC)

* Capability-Based Systems

* Other Protection Implementation Methods

* Language-based Protection



