
CISC 3320

C30a Protection: Domain and
Access Matrix

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

4/18/2019 1CUNY | Brooklyn College

Acknowledgement

• These slides are a revision of the slides
provided by the authors of the textbook via
the publisher of the textbook

4/18/2019 CUNY | Brooklyn College 2

Outline

• Goals of Protection

• Principles of Protection

• Domain of Protection

• Access Matrix

• Implementation of Access Matrix

• Revocation of Access Rights

4/18/2019 CUNY | Brooklyn College 3

Security and Protection

• Security systems

• authenticate system users to protect the integrity
of program code, data, and the physical resources of
the computer system.

• prevent unauthorized access, malicious destruction or
alteration of data, and accidental introduction of
inconsistency.

• Protection mechanisms

• controls the access of programs, processes, or users
to the resources defined by a computer system.

4/18/2019 CUNY | Brooklyn College 4

Protection Model: Process &
Objects
• A computer consists of a collection of objects, hardware

or software

• Each object has a unique name and can be accessed through a
well-defined set of operations

• Processes carry out the operations

• Hardware objects (such as devices)

• Software objects (such as files, programs, semaphores)

• Process should only have currently required types of
access to currently required objects to complete its task

• the least-privilege principle

• the need-to-know principle

4/18/2019 CUNY | Brooklyn College 5

Domain of Protection

• A process may operate within a protection domain
that specifies the resources that the process may
access.

• Example

• Ability to execute an operation on an object is an access
right

• Example operation: read, write, execute, list

• A domain can be defined as a collection of access rights

• each of which is an ordered pair <object-name, rights-set>.

• A process is associated with a domain

• Associations can be static or dynamic

• If dynamic, processes can switch domains

4/18/2019 CUNY | Brooklyn College 6

Examples of Protection Domain

• Domain = set of access-rights

• Access-right = <object-name, rights-set>

• Rights-set is a subset of all valid operations
that can be performed on the object

• Example

• 3 domains below

4/18/2019 CUNY | Brooklyn College 7

Example: 3 Domains

4/18/2019 CUNY | Brooklyn College 8

Representing Protection
Domain: Access Matrix
• View protection as a matrix, called Access

Matrix or Access Control Matrix

• Rows represent domains

• Columns represent objects

• Access(i, j) is the set of operations that a
process executing in Domaini can invoke on
Objectj

• A domain is associated with a process in the
process-object model

4/18/2019 CUNY | Brooklyn College 9

Access Matrix: Example

• A process associated with Di will have the
specified rights for the specified objects

4/18/2019 CUNY | Brooklyn College 10

Use of Access Matrix

• Associate a process with a domain (a process
is in/is executing in/enters the domain)

• If a process in Domain Di tries to do “op” on
object Oj, then “op” must be in the access
matrix

• User who creates object can define access
column for that object

4/18/2019 CUNY | Brooklyn College 11

Access Matrix: Policy &
Mechanism
• Access matrix design separates mechanism

from policy

• Mechanism

• Operating system provides access-matrix + rules

• If ensures that the matrix is only manipulated by
authorized agents and that rules are strictly
enforced

• Policy

• User dictates policy

• Who can access what object and in what mode

4/18/2019 CUNY | Brooklyn College 12

Access Matrix: Dynamic
Protection
• Can be expanded to dynamic protection (domain

switch)

• Operations to add, delete access rights

• Special access rights:

• transfer – switch from domain Di to Dj

• owner of Oi

• copy op from Oi to Oj (denoted by “*”)

• control – Di can modify Dj access rights

• Copy and Owner applicable to an object

• Control applicable to domain object

4/18/2019 CUNY | Brooklyn College 13

Access Matrix Domain Switch:
Example
• A process in D2 can enter/switch to D3 or D4

4/18/2019 CUNY | Brooklyn College 14

Copy Right

• The ability to copy an access right from one
domain (or row) of the access matrix to
another

• denoted by an asterisk (*) appended to the
access right.

• The copy right allows the access right to be
copied only within the column (that is, for
the object) for which the right is defined.

4/18/2019 CUNY | Brooklyn College 15

Access Matrix with Copy
Rights: Example
• A process executing in domain D2 can copy

the read operation into any entry associated
with file F2.

4/18/2019 CUNY | Brooklyn College 16

Owner Right

• If access(i,j) includes the owner right, then
a process executing in domain Di can add and
remove any right in any entry in column j.

4/18/2019 CUNY | Brooklyn College 17

Access Matrix with Owner
Rights: Example
• the access matrix of (a) can be modified to

the access matrix (b).

4/18/2019 CUNY | Brooklyn College 18

Control Right

• The copy and owner rights allow a process to
change the entries in a column.

• The control right is applicable only to domain
objects, i.e., to change the entries in a row
(or a domain)

• Example

• See below

• A process is executing in domain D2 can change D4

4/18/2019 CUNY | Brooklyn College 19

4/18/2019 CUNY | Brooklyn College 20

Implementation of Access
Matrix
• Generally, a sparse matrix

• How much memory do we need to naively/directly
implement an access matrix?

• Examples

• Global table

• Access list (access-control list)

• Capability list

• Lock key

4/18/2019 CUNY | Brooklyn College 21

Global Table

• Store ordered triples <domain, object,
rights-set> in table

• A requested operation M on object Oj within
domain Di -> search table for < Di, Oj, Rk >
• with M ∈ Rk

• But table could be large -> won’t fit in main
memory
• How big?

• Difficult to group objects (consider an
object that all domains can read)

4/18/2019 CUNY | Brooklyn College 22

Global Table: Example

• Given 3 domains and 3 files:

• r,w,x,o = read, write, execute, own

• Q: how to store this as a global table?

11/4/2016 CSCI 451 - Fall 2016
23

File1 File2 File3

D1 rx r rwo

D2 rwxo r

D3 rx rwo w

Global Table: Example

• Given 3 domains and 3 files:

• r,w,x,o = read, write, execute, own

• Global table (3 columns, 6 rows)

• <D1, File1, rx>, <D1, File2, r>, <D1, File3, rwo>, <D2, File1,
rwxo>, <D2, File2, r>, <D3, File1, rx>, <D3, File2, rwo>,
<D3, File3, w>

11/4/2016 CSCI 451 - Fall 2016
24

File1 File2 File3

D1 rx r rwo

D2 rwxo r

D3 rx rwo w

Access Lists (Access-Control
Lists) for Objects
• Each column implemented as an access list

for one object

• Resulting per-object list consists of ordered
pairs <domain, rights-set> defining all
domains with non-empty set of access rights
for the object

• Easily extended to contain default set -> If
M ∈ default set, also allow access

4/18/2019 CUNY | Brooklyn College 25

Access Lists: Example

• Each column implemented as an access list
for one object

• File1: {<D1, rx>, <D2, rwxo>, <D3, rx>}

• File2: {<D1, r>, <D2, r>, <D3, rwo>}

• File3: {<D1, rwo>, <D3, w>}

11/4/2016 CSCI 451 - Fall 2016
26

File1 File2 File3

D1 rx r rwo

D2 rwxo r

D3 rx rwo w

Access List and Capability List

• Access list for objects
• Each column = Access list for one object

Defines who can perform what operation
• Domain 1 = Read, Write

• Domain 2 = Read

• Domain 3 = Read

• Capability list
• Each Row = Capability List for each domain, what

operations allowed on what objects
• Object F1 – Read

• Object F4 – Read, Write, Execute

• Object F5 – Read, Write, Delete, Copy

4/18/2019 CUNY | Brooklyn College 27

Capability List for Domains
• Instead of object-based, list is domain based

• Capability list for domain is list of objects together with operations
allows on them

• Object represented by its name or address, called a capability

• Execute operation M on object Oj, process requests operation and
specifies capability as parameter

• Possession of capability means access is allowed

• Capability list associated with domain but never directly accessible by
domain

• Rather, protected object, maintained by OS and accessed indirectly

• Like a “secure pointer”

• Idea can be extended up to applications

4/18/2019 CUNY | Brooklyn College 28

Capability Lists: Example

• Capability list for domain is list of objects
together with operations allows on them

• D1: { <file1, rx>, <file2, r>, <file3, rwo> }

• D2: { <file1, rwxo>, <file2, r> }

• D3: { <file1, rx>, <file2, rwo>, <file3, w> }

11/4/2016 CSCI 451 - Fall 2016
29

File1 File2 File3

D1 rx r rwo

D2 rwxo r

D3 rx rwo w

Lock Key

• Compromise between access lists and
capability lists

• Each object has list of unique bit patterns,
called locks

• Each domain as list of unique bit patterns
called keys

• Process in a domain can only access object if
domain has key that matches one of the
locks

4/18/2019 CUNY | Brooklyn College 30

Comparison of Implementations

• Many trade-offs to consider

• Global table is simple, but can be large

• Access lists correspond to needs of users

• Determining set of access rights for domain non-localized so
difficult

• Every access to an object must be checked

• Many objects and access rights -> slow

• Capability lists useful for localizing information for a given
process

• But revocation capabilities can be inefficient

• Lock-key effective and flexible, keys can be passed freely
from domain to domain, easy revocation

4/18/2019 CUNY | Brooklyn College 31

Implementation

• Most systems use combination of access
lists and capabilities

• First access to an object -> access list searched

• If allowed, capability created and attached to process

• Additional accesses need not be checked

• After last access, capability destroyed

• Consider file system with ACLs per file

4/18/2019 CUNY | Brooklyn College 32

Revocation of Access Rights

• Various options to remove the access right
of a domain to an object

• Immediate vs. delayed

• Selective vs. general

• Partial vs. total

• Temporary vs. permanent

4/18/2019 CUNY | Brooklyn College 33

Revocation of Access Rights in
Access List
• Access List – Delete access rights from

access list

• Simple – search access list and remove entry

• Immediate, general or selective, total or partial,
permanent or temporary

4/18/2019 CUNY | Brooklyn College 34

Revocation of Access Rights in
Capability List
• Capability List – Scheme required to locate capability in the

system before capability can be revoked

• Reacquisition – periodic delete, with require and denial if revoked

• Back-pointers – set of pointers from each object to all capabilities
of that object (Multics)

• Indirection – capability points to global table entry which points to
object – delete entry from global table, not selective (CAL)

• Keys – unique bits associated with capability, generated when
capability created

• Master key associated with object, key matches master key for access

• Revocation – create new master key

• Policy decision of who can create and modify keys – object owner or others?

4/18/2019 CUNY | Brooklyn College 35

Implementing Protection
Domain: UNIX
• Domain = user-id (or group-id, or “public”)

• Domain switch accomplished via file system

• Each file has associated with it a domain bit (setuid bit)

• When file is executed and setuid = on, then user-id is set to owner
of the file being executed

• When execution completes user-id is reset

• Domain switch accomplished via passwords

• su command temporarily switches to another user’s domain when
other domain’s password provided

• Domain switching via commands

• sudo command prefix executes specified command in another domain
(if original domain has privilege or password given)

4/18/2019 CUNY | Brooklyn College 36

A Sample UNIX Directory
Listing

4/18/2019 CUNY | Brooklyn College 37

Permissions
user & group

size
modify time

name

number of hardlinks

Access Lists in UNIX

• Mode of access: read, write, execute

• Three classes of users on Unix / Linux
RWX

a) owner access 7  1 1 1
RWX

b) group access 6  1 1 0

RWX

c) public access 1  0 0 1

4/18/2019 CUNY | Brooklyn College 38

Access Groups in UNIX

• Ask administrator/manager to create a
group (unique name), say G, and add some
users to the group.

• For a particular file (say game) or
subdirectory, define an appropriate access.

4/18/2019 CUNY | Brooklyn College 39

Attach a group to a file
chgrp G game

Windows Access-Control List
Management

4/18/2019 CUNY | Brooklyn College 40

Questions?

• Goals of Protection

• Principles of Protection

• Domain of Protection

• Access Matrix

• Implementation of Access Matrix

• Revocation of Access Rights

4/18/2019 CUNY | Brooklyn College 41

