CISC 3320
C30a Protection: Domain and

Access Matrix

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College

Acknowledgement

* These slides are a revision of the slides
provided by the authors of the textbook via
the publisher of the textbook

Outline

* Goals of Protection

* Principles of Protection

» Domain of Protection

* Access Matrix

* Implementation of Access Matrix
* Revocation of Access Rights

Security and Protection

» Security systems

« authenticate system users to protect the integrity
of program code, data, and the physical resources of
the computer system.

« prevent unauthorized access, malicious destruction or
alteration of data, and accidental introduction of
Inconsistency.

e Protection mechanisms

« controls the access of programs, processes, or users
to the resources defined by a computer system.

Protection Model: Process &
Objects

« A computer consists of a collection of objects, hardware
or software

 Each object has a unique name and can be accessed through a
well-defined set of operations

* Processes carry out the operations
* Hardware objects (such as devices)
 Software objects (such as files, programs, semaphores)

* Process should only have currently required types of
access to currently required objects to complete its task

* the least-privilege principle

* the need-to-know principle

Domain of Protection

* A process may operate within a protection domain
that specifies the resources that the process may
access.

» Example

* Ability to execute an operation on an object is an access
right

« Example operation: read, write, execute, list

« A domain can be defined as a collection of access rights
* each of which is an ordered pair <object-name, rights-set>.

* A process is associated with a domain

* Associations can be static or dynamic

« If dynamic, processes can switch domains

Examples of Protection Domain

* Domain = set of access-rights
» Access-right = <object-name, rights-set>

* Rights-set is a subset of all valid operations
that can be performed on the object

» Example

* 3 domains below

Example: 3 Domains

< O, {read, write} >
< 04, {read, write} >
< 0O,, {execute} >

4/18/2019

< 0., {execute} >
< O, {read} >

< Oy, {print} >

CUNY | Brooklyn College 8

Representing Protection
Domain: Access Matrix

» View protection as a matrix, called Access
Matrix or Access Control Matrix

* Rows represent domains

* Columns represent objects

* Access (i, j) is the set of operations that a
process executing in Domain; can invoke on
Object;

A domain is associated with a process in the
process-object model

Access Matrix: Example

* A process associated with D; will have the
specified rights for the specified objects

object
_ F, Fs = printer
domain

D, read read
D, print
D5 read execute
D read read

4 write write

Use of Access Matrix

» Associate a process with a domain (a process
is in/is executing in/enters the domain)

 If a process in Domain D; tries to do "op" on
object 0, then "op" must be in the access
matrix

» User who creates object can define access
column for that object

Access Matrix: Policy &
Mechanism

 Access matrix desigh separates mechanism
from policy
* Mechanism
 Operating system provides access-matrix + rules

 If ensures that the matrix is only manipulated by
authorized agents and that rules are strictly
enforced

* Policy
 User dictates policy
* Who can access what object and in what mode

Access Matrix: Dynamic

Protection

* Can be expanded to dynamic protection (domain
switch)

 Operations to add, delete access rights
 Special access rights:

* transfer - switch from domain D; to D;

« owner of O,

» copy op from O, to O, (denoted by "*)

» control - D; can modify D; access rights
« Copy and Owner applicable to an object
« Control applicable to domain object

Access Matrix Domain Switch:

Example
* A process in D, can enter/switch to D;or D,

e e | R | R b | b, | D | D,
domain printer

D, read read switch

D, print switch | switch

D, read |execute

Dy 553% 553% switeh

Copy Right

* The ability to copy an access right from one
domain (or row) of the access matrix to
another

 denoted by an asterisk (*) appended to the
access right.

 The copy right allows the access right to be
copied only within the column (that is, for
the object) for which the right is defined.

Access Matrix with Copy

Rights: Example

* A process executing in domain D, can copy

the read operation into any entry associated

object
domain

F‘I FE F3 F«' F2 F3
domain
D, execute write* D, execute write*
D, execute read”® execute D, execute read* execute
D, execute D, execute read
(a) (b)
4/18/2019 CUNY | Brooklyn College 16

Owner Right

* If access(i,j) includes the owner right, then
a process executing in domain D; can add and
remove any right in any entry in column j.

Access Matrix with Owner
Rights: Example

* the access matrix of (a) can be modified to
the access matrix (b).

object object
Fi F> Fi F; F, Fa
domain domain

D owner : D owner :
g execute write 1 execute write
read” read” owner read”
D, A owner D, read* owner
write write* write
D, execute D, write write

(a) (b)
4/18/2019 CUNY | Brooklyn College 18

Control Right

* The copy and owner rights allow a process to
change the entries in a column.

 The control right is applicable only to domain
objects, i.e., to change the entries in a row
(or a domain)

» Example

« See below

* A process is executing in domain D, can change D,

object

laser

F F F : D D D D
A5inain 1 2 3 printer 1 2 3 4
D, read read switch
D % ; switch
> print switch Gentesi
D, read |execute
D regd regd .
4 write write switch
object
G B
domain Pt
D, read read switch
D 2 : switch
> print switch control
D, read |execute
D, write write switch
CUNY | Brooklyn College

4/18/2019

20

Implementation of Access
Matrix

* Generadlly, a sparse matrix

* How much memory do we need to naively/directly
implement an access matrix?

« Examples
* Global table
« Access list (access-control list)
* Capability list
* Lock key

Global Table

» Store ordered triples <domain, object,
rights-set> in table

* A requested operation M on object O; within
domain D, -> search table for < D;, O;,'R, »

JI
e with M € Rk
* But table could be large -> won't fit in main
memory
* How big?

» Difficult to group objects (consider an
object that all domains can read)

Global Table: Example

e Given 3 domains and 3 files:

* r,W,X,0 = read, write, execute, own

D1 rx r rwo
D2 rwxo r
D3 rx rwo W

* Q: how to store this as a global table?

11/4/2016 CSCl 451 - Fall 2016

23

Global Table: Example

e Given 3 domains and 3 files:

* r,W,X,0 = read, write, execute, own
D1 rx r rwo
D2 rwxo r

D3 rx rwo w
* Global table (3 columns, 6 rows)

« <D1, Filel, rx>, <D1, File2, r>, <D1, File3, rwo>, <D2, Filel,
rwxo>, <D2, File2, r>, <D3, Filel, rx>, <D3, File2, rwo>,
<D3, File3, w>

11/4/2016 CSCl 451 - Fall 2016

Access Lists (Access-Control
Lists) for Objects

* Each column implemented as an access list
for one object

» Resulting per-object list consists of ordered
pairs <domain, rights-set> defining all
domains with non-empty set of access rights
for the object

» Easily extended to contain default set -> If
M € default set, also allow access

Access Lists: Example

* Each column implemented as an access list
for one object

. [Filex [File2 [File3 |
D1 rx r rwo

D2
D3

e Fi
oF°
e Fi

11/4/2016

r'wxo r

rx rwo w

el: {<D1, rx>, <D2, rwxo>, <D3, rx>}
e2: {<D1, r>, <D2, r>, <D3, rwo>}
e3: {<D1, rwo>, <D3, w>}

CSCl 451 - Fall 2016

26

Access List and Capability List

» Access list for objects

* Each column = Access list for one object
Defines who can perform what operation

« Domain 1 = Read, Write
 Domain 2 = Read
 Domain 3 = Read

* Capability list
 Each Row = Capability List for each domain, what
operations allowed on what objects
« Object F1 - Read

« Object F4 - Read, Write, Execute
« Object F5 - Read, Write, Delete, Copy

Capability List for Domains

« Instead of object-based, list is domain based

* Capability list for domain is list of objects together with operations
allows on them

« Object represented by its name or address, called a capability

» Execute operation M on object O;, process requests operation and
specifies capability as parameter

* Possession of capability means access is allowed

* Capability list associated with domain but never directly accessible by
domain

 Rather, protected object, maintained by OS and accessed indirectly
« Like a "secure pointer”

 Idea can be extended up to applications

Capability Lists: Example

* Capability list for domain is list of objects
together with operations allows on them

D1 rx r rwo
D2 rwxo r

D3 rx rwo W

« DI1: { <filel, rx>, <file2, r>, <file3, rwo> }
« D2: { <filel, rwxo>, <file2, r>}
« D3: { <filel, rx>, <file2, rwo>, <file3, w> }

11/4/2016

29
CSCl 451 - Fall 2016

Lock Key

« Compromise between access lists and
capability lists

* Each object has list of unique bit patterns,
called locks

* Each domain as list of unique bit patterns
called keys

* Process in a domain can only access object if
domain has key that matches one of the
locks

Comparison of Implementations

* Many trade-offs to consider
* Global table is simple, but can be large
» Access lists correspond to needs of users

« Determining set of access rights for domain non-localized so
difficult

« Every access to an object must be checked

* Many objects and access rights -> slow

* Capability lists useful for localizing information for a given
process

* But revocation capabilities can be inefficient

 Lock-key effective and flexible, keys can be passed freely
from domain to domain, easy revocation

Implementation

* Most systems use combination of access
lists and capabilities

» First access to an object -> access list searched
 If allowed, capability created and attached to process
« Additional accesses need not be checked
« After last access, capability destroyed

» Consider file system with ACLs per file

Revocation of Access Rights

* Various options to remove the access right
of a domain to an object

« Immediate vs. delayed
* Selective vs. general
* Partial vs. total

« Temporary vs. permanent

Revocation of Access Rights in

Access List

* Access List - Delete access rights from
access list

« Simple - search access list and remove entry

- Immediate, general or selective, total or partial,
permanent or tfemporary

Revocation of Access Rights in
Capability List

* Capability List - Scheme required to locate capability in the
system before capability can be revoked

* Reacquisition - periodic delete, with require and denial if revoked

 Back-pointers - set of pointers from each object to all capabilities
of that object (Multics)

 Indirection - capability points to global table entry which points to
object - delete entry from global table, not selective (CAL)

* Keys - unique bits associated with capability, generated when
capability created

* Master key associated with object, key matches master key for access
* Revocation - create new master key

* Policy decision of who can create and modify keys - object owner or others?

Implementing Protection
Domain: UNIX

« Domain = user-id (or group-id, or "public")
 Domain switch accomplished via file system
« Each file has associated with it a domain bit (setuid bit)

 When file is executed and setuid = on, then user-id is set to owner
of the file being executed

* When execution completes user-id is reset
 Domain switch accomplished via passwords

« su command temporarily switches to another user’'s domain when
other domain's password provided

« Domain switching via commands

« sudo command prefix executes specified command in another domain
(if original domain has privilege or password given)

A Sample UNIX Directory

Listing

-IW-TW-TI--

drwxrwxr-x

drwxrwx---
-TW-I--T--
-TWXI-XI-X
drwx--x--X

| pbg
J pbg
2 pbg
2 pbg
| pbg
| pbg
4 pbg
3 pbg

drwxrwxrwx 3 pbg

)

\
f

Permissions

staff 31200
staff 512
staff 312
student 312
staff 9423
staff 20471
faculty 912
staff 1024
staff 512

| Y /LYJ\

size

user & group

number of hardlinks

4/18/2019

CUNY | Brooklyn College

Sep 308:30 1ntro.ps

Jul 809.33 private/

Jul 809:35 doc/

Aug 3 14:13 student-proj/

Feb 24 2003 program.c

Feb 24 2003 program

Jul3110:31 lib/

Aug 29 06:52 mail/

Jul §09:35 test/

I)
Y f

modify time name

37

Access Lists in UNIX

* Mode of access: read, write, execute
* Three classes of users on Unix / Linux

RWX
a) owner access 7 = 111

RWX
b) group access 6 = 110

RWX

c) public access 1 = 001

Access Groups in UNIX

« Ask administrator/manager to create a
group (unique name), say G, and add some
users to the group.

* For a particular file (say game) or
subdirectory, define an appropriate access.

owner dgroup public

S |

chmod 761 game

Attach a group to a file
chgrp G game

Windows Access-Control List

Management |

ListPanel.java Properties

[Goneral| Securty | Detais | Previous Versions|

EXS

Ohbject name: HADATANPattems Materal* Src' ListPanel java

ISI'I:ILIIZI ar User names:

52 SYSTEM
G

52 File

52, Administrators (FILES Administrators)

Pemissions for Guest Allow Dery

To change permissions, click Edit. Edit |

Full control

Maodify

Fead & execute
Fead

Write

Special pemissions

LSANSNANS

Leam about access control and pemissions

QK || Cancel | Appl

For special pemissions or advanced settings, e |
click Advanced.

4/18/2019 CUNY | Brooklyn College

40

Questions?

* Goals of Protection

* Principles of Protection

» Domain of Protection

* Access Matrix

* Implementation of Access Matrix
* Revocation of Access Rights

